• Title/Summary/Keyword: body tilting

Search Result 114, Processing Time 0.024 seconds

Sensitivity analysis for optimizing the suspension system of the tilting train (틸팅 열차의 현가장치 최적화를 위한 민감도 분석)

  • Kim, Jeong-Beom;Park, Tae-Won;Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2151-2155
    • /
    • 2008
  • The tilting train express (TTX) is able to tilt its body toward to the center of the turning radius on curved railways. TTX can travel at higher speed than the existing normal railway vehicles due to the tilting mechanism decreasing centrifugal force. Also, a new suspension system is required for TTX which has proper stiffness constants and damping ratios because it has different suspension characteristics with the others. Therefore, the suspension systems need to be optimized to maximize dynamic characteristic of the railway vehicle. To optimize the dynamic characteristics of TTX, sensitivity analysis should be onde to identify design variables. In this paper, Design of Experiments(DOE) is used for the sensitivity analysis of TTX.

  • PDF

The Development Plan of TTX Hybrid Carbody Structures and Study on Foreign Cases (TTX 하이브리드 차체 개발 방향과 국외 사례 분석)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.34-37
    • /
    • 2004
  • Tilting trains could offer a low cost solution as they can be operated on existing track and attain higher speeds (as compared to conventional trains) thanks to a mechanism that tilts the vehicle body of the train when negotiating curves, thus giving it additional superelevation Also, the weight saving of the carbody structures of the tilting train is a significant problem to operate the tilting mechanism without failure and to minimize wear and tear on wheels and rails. Therefore, the TTX will be developed using hybrid design concept to match the challenging demands with respect to cost efficient lightweight design for carbody structures. Hybrid design helps to save production costs and to reduce the weight of carbodies.

  • PDF

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 Hybrid차체 접합체결부의 피로 특성 평가)

  • Jung, Dal-Woo;Kim, Duck-Jae;Choi, Se-Hyun;Seo, Sueng-Il;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.260-263
    • /
    • 2005
  • Fatigue fracture behavior of a hybrid joint between side-panel and under-frame by riveting and adhesive bonding has been evaluated. Two kinds of joint specimens based on real geometry were fabricated for shearing test as well as bending test. Static and cyclic loadings were used for fatigue assessment. Fatigue fracture results obtained by such experiments were reflected in modifications of design parameters of the hybrid joint.

  • PDF

Application of Composite Materials in Korean Express Tilting Train(TTX) System (한국형 틸팅차량 시스템에서의 복합재료 적용)

  • 박기진;신광복;한성호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.65-68
    • /
    • 2003
  • Using composite materials for lilting train system has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fer drivers' cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train car body structure. In this paper, we examine the use of composite materials for the drivers' cabs and interior/exterior equipments for the developing tilting train in Korea, and review the car body design using composite materials.

  • PDF

A Study on Light Collision Safety of Tilting Train Express (TTX 경충돌 사고시 안전도 확보 방안에 관한 연구)

  • Cho Tae-Min;Kwon Tae-Soo;Jung Hyun-Seung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.634-639
    • /
    • 2004
  • Under light collision accidents, the energy absorption strategy for the coupler and expansion tube of the TTX(Tilting Train Express) initial design is established in the paper. Also, 1st shearing bolts are designed. When the absorbed energy of the coupler reaches its maximum, the connecting bolts between the coupler and the car body are sheared off not to transmit the impact force to the car body structure. To absorb more energy after the lst shearing bolts work, a expansion tube is designed conceptually and installed at the rear part of the coupler. Using Hyper-Mesh and LS-DYNA, pre/post processing and light collision analyses are preformed, respectively.

  • PDF

Vibration of the feeding system for a CD-ROM Drive (CD-ROM 드라이브 피딩 시스템의 진동해석)

  • 박준민;노대성;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.324-329
    • /
    • 1996
  • Vibration characteristics of the feeding system in a CD-ROM drive are identified by a theoretical modeling as well as vibration experiments. For this purpose, we establish a vibration model due to the rigid-body motion and perform the modal testings using the impact hammer and shaker. The analysis and experiments show that the feeding system has three rigid-body vibration modes in the low-frequency region and two of them come from the tilting modes. In order to remove the harmful tilting modes for the tracking servo control, a methodology to find the optimal positions of the dampers is also proposed in this study.

  • PDF

A Study on ZMP Improvement of Biped Walking Robot Using Neural Network and Tilting (신경회로망과 틸팅을 이용한 이족 보행로봇의 ZMP 개선 연구)

  • Kim, Byoung-Soo;Nam, Kyu-Min;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • Based on the stability criteria of ZMP (Zero Moment Point), this paper proposes an adjusting algorithm that modifies walking trajectory of a bipedal robot for stable walking by analyzing ZMP trajectory of it. In order to maintain walking balance of the bipedal robot, ZMP should be located within a supporting polygon that is determined by the foot supporting area with stability margin. Initially tilting imposed to the trajectory of the upper body is proposed to transfer ZMP of the given walking trajectory into the stable region for the minimum stability. A neural network method is also proposed for the stable walking trajectory of the biped robot. It uses backpropagation learning with angles and angular velocities of all joints with tilting to get the improved walking trajectory. By applying the optimized walking trajectory that is obtained with the neural network model, the ZMP trajectory of the bipedal robot is certainly located within a stable area of the supporting polygon. Experimental results show that the optimally learned trajectory with neural network gives more stability even though the tilting of the pelvic joint has a great role for walking stability.

Posture and Low Back Pain (일반적인 자세가 요통에 미치는 영향에 대한 고찰)

  • Jung, Mun-Boung;Lee, Geoun-Sung;Kang, Eun-Mi;Oh, Kyeong-Seok
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.4
    • /
    • pp.207-214
    • /
    • 1996
  • Main cause of low back pain is a poor posture. Most low back pains are due to a poor posture. The poor posture induces muscle tension and finaliy low back pain. The poor posture arehabitually trained from the childhood by the environmetal factors. In general, maintaining good posture during working and sleeping hours are the first line of defence against back pam. (1) Supine posture is the easiest posture that relaxes and fixes muscles. Supine posture is thus a starting position for on exercise. Lying down releases the weight pressures of head and shoulder and thus body can be relaxed and extended which are helpful for treating back pain. However, supine posture can increase the pressure in ribcage posture aspect and disphragram due to visceral oragans. (2) Sitting in one position for a long time results in fatigue and relaxation of spinal muscies. Finally, body strength is weakened and sitting posture will become poor. If this poor posture continues for a longer time, pain will be accompanied due to overelongation of muscle ligaments. The habitual poor posture could induce intervertebral disc distortion. If the intervertebral disc is damaged, sitting in one position or movement causes pain. (3) Abnormal lumbar curve induces the tention of abdominal muscle and paravertebral muscle groups as well as tention of lower limb muscle group connected to pelvis. For a person with weak body strength, muscle relaxation increases curvature in lumbar, chest and cervical regions. This will induce a pelvic anterior tilting of the imaginary line between A. S. I. S. and P. S. I. S. Hip joint extensor muscle acts on releasing the pelvic anterior tilting. Contrections of hamstring muscle and femoral muscle recover the imaginary line between A.S.LS. and P.S.I.S. from pelvic anterior tilting. thus, contraction of rectus abdominis muscle are required to maintain the normal lumbar curve.

  • PDF

A New Training System for Improving Postural Balance Using a Tilting Bed

  • Yu, Chang-Ho;Kwon, Tae-Kyu;Ryu, Mun-Ho;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.117-126
    • /
    • 2007
  • In this paper, we propose an early rehabilitation training system for the improvement of postural balance with multi-modality on a tilting bed. The integration of the visual, somatosensory and vestibular functions is significant to for maintaining the postural control of the human body. However, conventional rehabilitation systems do not provide multi-modality to trainees. We analyzed the characterization of postural control at different tilt angles of an early rehabilitation training system, which consists of a tilting bed, a visual feedback, a computer interface, a computer, and a force plate. The software that we developed for the system consists of the training programs and the analysis programs. To evaluate the characterization of postural control, we conducted the first evaluation before the beginning of the training. In the following four weeks, 12 healthy young and 5 healthy elderly subjects were trained to improve postural control using the training programs with the tilting bed. After four weeks of training, we conducted the second evaluation. The analysis programs assess (center of pressure) COP moving time, COP maintaining time, and mean absolute deviation of the trace before and after training at different tilt angles on the bed. After 4 weeks, the COP moving time was reduced, the COP maintaining time was lengthened, and the mean absolute deviation of the trace was lowered through the repeated use of vertical, horizontal, dynamic circle movement training programs. These results show that this system improves postural balance and could be applied to clinical use as an effective training system.

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.194-200
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute(KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express(TTX) is investigated using a dynamic simulation model. Since, proper safety standards have not been established for the TTX, those for the Korean train express(KTX) is employed instead to analyze the safety and ride comfort of the TTX. This study will prove useful in predicting the behavior of the TTX and ride comfort, and conforming that designed TTX measures up to the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

  • PDF