• 제목/요약/키워드: body stiffness

검색결과 495건 처리시간 0.025초

달리기 시 인솔의 굽힘 강성 증가에 따른 발목과 중족골 관절의 운동학적 변인 및 관절 협응에 미치는 영향 (The Effects on Kinematics and Joint Coordination of Ankle and MTP Joint as Bending Stiffness Increase of Shoes during Running)

  • Kim, Sungmin;Moon, Jeheon
    • 한국운동역학회지
    • /
    • 제31권3호
    • /
    • pp.205-213
    • /
    • 2021
  • Objective: The aim of this study was to analyze body stability Joint coordination pattern though as bending stiffness of shoes during stance phase of running. Method: 47 male subjects (Age: 26.33 ± 2.11 years, Height: 177.32 ± 4.31 cm, Weight: 65.8 ± 3.87 kg) participated in this study. All subjects tested wearing the same type of running shoes by classifying bending stiffness (A shoes: 3.2~4.1 N, B shoes: 9.25~10.53 N, C shoes: 20.22~21.59 N). They ran 10 m at 3.3 m/s (SD ±3%) speed, and the speed was monitored by installing a speedometer at 3 m intervals between force plate, and the measured data were analyzed five times. During running, ankle joint, MTP joint, coupling angle, inclination angle (anterior-posterior, medial-lateral) was collected and analyzed. Vector coding methods were used to calculate vector angle of 2 joint couples during running: MTP-Ankle joint frontal plane. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that there was an interaction between three shoes and phases for MTP (Metatarsalphalangeal) joint angle (p = .045), the phases in the three shoes showed difference with heel strike~impact peak (p1) (p = .000), impact peak~active peak (p2) (p = .002), from active peak to half the distance to take-off until take-off (p4) (p = .032) except for active peak~from active peak to half the distance to take-off (p3) (p = .155). ML IA (medial-lateral inclination angle) for C shoes was increased than other shoes. The coupling angle of ankle angle and MTP joint showed that there was significantly difference of p2 (p = .005), p4 (p = .045), and the characteristics of C shoes were that single-joint pattern (ankle-phase, MTP-phase) was shown in each phase. Conclusion: In conclusion, by wearing high bending stiffness shoes, their body instability was increased during running.

차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구 (A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration)

  • 성영석;강민석;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

세브론 스프링의 강성 변화에 따른 철도차량의 동특성 예측 연구 (Prediction of Dynamic Characteristics of Railway Vehicle by Stiffness Variation of Chevron Rubber Spring)

  • 유원희;박준혁;박남철;구정서
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.162-167
    • /
    • 2017
  • The chevron rubber spring is used for subway vehicle as a primary suspension. Generally, the primary suspension has an influence to the running performance and not so much effect on the ride comfort in railway vehicle. But the stiffness of chevron spring is harder and harder as time goes on because of rubber characteristics. Therefore the dynamic characteristics such as ride comfort and derailment coefficient should be reviewed according to the stiffness variation of chevron rubber spring. In this paper the effect of chevron rubber spring on dynamic characteristics was studied by considering multi-body dynamics of railway vehicle on one straight line and seven curved lines.

저진동 차량을 위한 결합부 인자 연구 (A Study on Joint Design Factors for Low Vibration Vehicle)

  • 이재우;성영석;강민석;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

접속구간 궤도강성변화 기준에 관한 연구 (The criteria for the change ratio of track stiffness along transition area)

  • 양신추;문제우;유진영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.351-357
    • /
    • 2007
  • The transition zone between railway embankment and structures, or different track types is known to be an area in which problems often arise and where extra care needs to be taken with maintenance. Differences in track stiffness have dynamic effects and these increase the force in the track and the extent of deformation. In this study, the criteria for the change ratio of track stiffness along transition area, and proper transition length are presented through train/track interaction analyses. Those are derived on the basis of permissible limitations of train and track performances such as rail stress, uplift force of fastener, reduction of dynamic wheel force, and acceleration of car body. A feasible method of evaluation of track stiffness which is necessary when a designer reviews whether the criteria are satisfied or not is also presented.

  • PDF

항강증 환자의 12 경맥 전위측정 연구 (Analysis of electrical potentials of patients with stiffness of nape)

  • 최환수;낭봉현
    • Korean Journal of Acupuncture
    • /
    • 제20권2호
    • /
    • pp.21-29
    • /
    • 2003
  • Objectives : Assuming that the characteristic of meridian system has been similar to that of electrical potentials in human body and that measurements of electrical potential at well(井穴) and sea (合穴) points in branches of the twelve meridians(WSBTM) will be representative of measurements of the twelve meridians, to measure the electrical potentials of 13 patients with stiffness of nape(項强症, SN), to find out the characteristic of meridian system in patients with SN. Methods : Electrical potentials of well and sea points in the meridians in 13 patients with stiffness at neck diagnosed as SN were repeatedly measured by physiograph(PowerLab). Measurements of those electrical potentials were analyzed by factor analysis. Results and Conclusions : The electrical potentials of WSBTM at the left side were divided into five factors. On the other hand those at the right side were divided into five factors. In conclusion, electrical potentials of well and sea points might be the representative meridian to show their characteristics.

  • PDF

여객차량 현가장치의 강성비 변화에 의한 진동 실험 (Expriment of the Vertical Vibration for Effect of the Parameter of Stiffness Ratio of the Small Scale Passenger Vehicle)

  • 최경진;장동욱;권영필;김완두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1110-1115
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the small scale vehicle test. Optimal condition was obtained for the stiffness ratio of the primary spring and secondary spring of the suspension system. When the stiffness ratio was Increased, the vortical vibration was increased on the car body for empty and weight car. The result of this study are stable to use of the optimum parameter of the ride duality of KT-23 type vehicle. Also, it is usefull to development of full scale vehicle dynamomer

  • PDF

합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계 (Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique)

  • 황우석;이덕영;하명수
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

소의 장골에서 치밀골의 생체역학적인 특성 (Biomechanical Properties of Cortical Bone in Bovine Long Bones)

  • 김남수;황의희;최성진;정인성;최은경;최인혁
    • 한국임상수의학회지
    • /
    • 제20권3호
    • /
    • pp.345-350
    • /
    • 2003
  • We were preferred bovine cortical bone to the others in xenobonegrafts for human and small animals, because those were not limited to supply and have sufficient size for bone transplantation. The strength (ST) and stiffness (SF) of cortical bone in bone grafts were very important. The strength and stiffness of cortical bone were much difference according to position of long bone in bovine limbs because which were biomechanical different to bear body weight. Therefore, we determinated by three bending point test methods the strength and stiffness of cortical bone which were collected in diaphysis of humerus, radius, femur and tibia of bovine. In the results, the strengths and stiffness among these were highest in radius by ST: 253.84$\pm$40.80 MPa, SF: 7.89$\pm$1.91 Gpa and lowest in humerus by ST: 185.69$\pm$28.54 MPa, SF: 6.21$\pm$1.22 Gpa.

로터 형상에 따른 초전도 베어링 강성 변화 (Study of superconductor bearing stiffness according to shape of rotor)

  • 윤희중;한영희;한상철;정년호;김경진;박병삼;성태현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.240-242
    • /
    • 2003
  • The properties of superconductor bearing are depend on shape of rotor, especially thickness of ferromagnetic shim between permanent magnets. The levitation forces and stiffness of superconductor bearings as the thickness of the ferromagnetic shim were calculated and measured, Frozen image model and difference of magnetization per unit volume of the superconductor were used to calculate stiffness for two models. The calculated values had similar trend with the measured one. From the results, an optimal design of the rotor was selected.

  • PDF