• 제목/요약/키워드: body segmentation

검색결과 130건 처리시간 0.024초

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

복부전산화단층영상의 체지방 분할방법 (Body Fat Segmentation of Abdominal CT Image)

  • 최석윤
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.489-493
    • /
    • 2019
  • 산업의 발달로 인한 생활습관과 신체활동 부족 등으로 한국인의 비만인구가 급증하고 있다. 전산화단층영상을 이용한 기존의 지방량 계산 프로그램에서 반자동방식의 프로그램이 사용되고 있다. 관련 문제를 해결하기 위한 방법들이 제시되고 있으나 본 연구에서는 모폴로지 연산을 이용한 알고리즘을 제시하고 절차가 간단하고 비교적 계산량이 적은 새로운 방법으로 문제를 해결하고자 한다. 모폴로지 연산을 통해 침식과 팽창을 반복한 결과 영상으로부터 문제점이 해결된 것을 알 수 있어 결과로부터 각 조직 간의 경계를 더욱 정교하게 얻을 수 있었다. LoG (Laplace of Gaussian) 함수를 이용해서 각 조직간 경계 부분을 분할하였다. 각 경계는 명확하게 구분이 되었으며, 피하지방을 계산하기 위해 충분한 정보를 제공하였다. 개발된 분할결과를 사용하여 향후 자동 지방량 계산을 할 수 있다. 정확한 분할 도구를 제공함으로써 의사에게 편리함을 주고 재검사로 인한 피폭과 검사비용을 줄이는데 도움이 될 것으로 판단한다.

클래스 종속 반연속 HMM을 이용한 립싱크 시스템 최적화 (Lip-Synch System Optimization Using Class Dependent SCHMM)

  • 이성희;박준호;고한석
    • 한국음향학회지
    • /
    • 제25권7호
    • /
    • pp.312-318
    • /
    • 2006
  • 기존의 립싱크 시스템은 음소 분할 후, 각각의 음소를 인식하는 2단계의 과정을 거쳤다. 하지만, 정확한 음소 분할의 부재와 음성이 끊긴 분할 된 음소로 이루어진 훈련 데이터들은 시스템의 전체 성능을 크게 떨어뜨렸다. 이런 문제를 해결하기 위해 Head-Body-Tail (HBT) 모델을 이용한 단모음 연속어 인식 기술을 제안한다. 주로 소규모 어휘를 다루는데 적합한 HBT 모델은 Head 와 Tail 부분에 문맥 종속 정보를 포함하여 앞 뒤 문맥에 따른 조음효과를 최대한 반영한다. 또한, 7개의 단모음을 입모양이 비슷한 세 개의 클래스로 분류하여, 클래스에 종속적인 코드북 3개를 가진 반연속HMM (Hidden Markov Model)을 적용하여 시스템을 최적화하고, 변이 부분이 큰 단어의 처음과 끝은 연속HMM의 8 믹스쳐 가우시안 구조를 사용하여 모델링하였다. 제안한 방법은 HBT구조의 연속HW과 대등한 성능을 보이지만, 파라미터 수는 33.92% 감소하였다. 파라미터 감소는 계산 양을 줄여주므로, 시스템이 실시간으로 동작 가능하게 한다.

고역통과 필터를 이용한 그리드 패턴 영역분할 (Grid Pattern Segmentation Using High Pass Filter)

  • 주기세
    • 한국항행학회논문지
    • /
    • 제11권1호
    • /
    • pp.59-63
    • /
    • 2007
  • 본 논문은 윤곽선이 불분명한 상황에서 체형의 윤곽선과 신체 내부의 그리드 패턴들을 추출하기 위한 이미지 분할 알고리즘을 서술한다. 이미지 분할 방법은 문턱 값을 이용한 이진화 기법을 사용한다. 복잡한 형상을 지닌 물체의 3차원 정보를 추출하기 위한 노이즈 제거 알고리즘은 $3{\times}3$ 하이브리드 고역통과 필터 방법을 제안한다. 본 하이브리드 고역통과 필터 알고리즘은 노이즈 제거 시간이 기존 방법에 대하여 훨씬 단축되기 때문에 3차원 체형, CAD 시스템, 공장자동화와 같은 복잡한 형상을 지닌 물체의 3차원 정보를 추출하는데 적용할 수 있다.

  • PDF

딥러닝을 이용한 사용자 구분 및 위치추적 알고리즘 (User classification and location tracking algorithm using deep learning)

  • 박정탁;이솔;박병서;서영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.78-79
    • /
    • 2022
  • 본 논문에서는 RGB-D 카메라를 이용하여 획득한 다수 사용자의 정규화된 스켈레톤의 신체 비율 분석을 통해 각 사용자의 구분 및 위치를 추적하는 기법을 제안한다. 이를 위해 3D 포인트 클라우드로부터 각 사용자의 3D 스켈레톤을 추출한 뒤 신체 비율 정보를 저장한다. 이후 저장된 신체 비율 정보를 전체 프레임에서 출력된 신체 비율 데이터와 유사도를 비교하여 전체 영상에서의 사용자 구분 및 위치추적 알고리즘을 제안한다.

  • PDF

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

중국 의류소비자 특성 고찰 (Characteristics of Chinese Consumers Related to Clothing Consumption)

  • 유혜경
    • 한국의류학회지
    • /
    • 제22권2호
    • /
    • pp.233-240
    • /
    • 1998
  • The main objective of this study was to develop a basic information base on Chinese consumers related to clothing purchases. Previous studies on Chinese consumers were extensively reviewed and in-depth interviews were conducted with 12 middle-level managers at Korean apparel companies which market their merchandises in China. Combined results from the reviews on previous studies and interviews indicated that traditional values, communism and industrialization are the major forces which shape contemporary Chinese consumers. Industrialization, in particular, accompanied by influx of western culture and economic development, has resulted in wide-spread phenomenon of conspicuous consumption. Thus, brand and brand images appeared to be the most important considerations for purchasing imported apparels. In addition, diversity of Chinese consumers and geographical differences were emphasized, which indicated need for market segmentation. Other characteristics including body measurements also provided implications for fashion marketing in China.

  • PDF

Automatic Segmentation of Skin and Bone in CT Images using Iterative Thresholding and Morphological Image Processing

  • Kang, Ho Chul;Shin, Yeong-Gil;Lee, Jeongjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.191-194
    • /
    • 2014
  • This paper proposes a fast and efficient method to extract the skin and bone automatically in CT images. First, the images were smoothed by applying an anisotropic diffusion filter to remove noise. The whole body was then detected by thresholding, which was set automatically. In addition, the contour of the skin was segmented using morphological operators and connected component labeling (CCL). Finally, the bone was extracted by iterative thresholding.

평균곡률 구간법을 이용한 CMM 데이터의 경계 형성 연구 (A Study on the Edge Construction of CMM Data Using a Method of Mean Curvature Block)

  • 장병춘;김대일;오석형
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.74-80
    • /
    • 2010
  • The purpose of reverse engineering design using 3D measurement data is an accurate reconstruction of real body. In oder to accomplish this object, it is important that creating exact extracting edges should be studying out first of all. This study used edge-based method to find out edge point from the measuring point data. The characteristics are analysed using the mean curvature block method on the fitting NURBS curve and defined edges through block removal condition. The results showed that only using the NURBS curve of maximum curvature analysis to define correct edge of real geometry is limited, but this segmentation approach provides simplified necessary condition for edge classification, and an effectiveness to classify a straight line, curves and fillets etc.

음성인식 시스템에서의 음소분할기의 성능 (Performance of the Phoneme Segmenter in Speech Recognition System)

  • 이광석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.705-708
    • /
    • 2009
  • 본 연구는 자연음성의 인식을 위하여 신경회로망을 기초로 한 음소 분할기에 대하여 기술하였다. 자연음성의 인식을 위한 음소 분할기의 입력으로는 16차 멜 스케일의 FFT, 정규화된 프레임 에너지, 0~3[KHz] 주파수 대역 및 그 이상의 대역에서의 에너지 비를 사용하였다. 모든 특징들은 두개의 연속적인 10[msec] 프레임의 차이며, 본 연구에 사용한 음소분할기는 하나의 72입력을 가지는 은닉층 퍼셉트론, 20은닉노드 및 하나의 출력노드로 구성하여 사용하였다. 자연음성에 대한 음소분할의 정확도는 7.8%삽입을 가지는 78%를 얻을 수 있었다.

  • PDF