• 제목/요약/키워드: body balance

검색결과 1,184건 처리시간 0.035초

아급성기 뇌졸중 환자의 다리근력, 균형, 보행, 재활만족도에 대한 로봇 보조 기립경사대 훈련과 체중지지 트레드밀 훈련의 효과 비교 (Comparison of Robotic Tilt-table Training and Body Weight Support Treadmill Training on Lower Extremity Strength, Balance, Gait, and Satisfaction with Rehabilitation, in Patients with Subacute Stroke)

  • 권승철;신원섭
    • 대한물리의학회지
    • /
    • 제15권4호
    • /
    • pp.163-174
    • /
    • 2020
  • PURPOSE: This study examined the effects of Robot Tilt-table Training (RTT) on the lower extremity strength, balance, gait, and satisfaction with rehabilitation, in patients with subacute stroke (less than six months after stroke onset), and requiring intensive rehabilitation. METHODS: A total of 29 subacute stroke patients were divided into an RTT group (n = 14) and a Body Weight Support Treadmill Training (BWSTT) group (n = 15). The mean age of patients was 62 years. RTT and BWSTT were performed for four weeks, three times a week, for 30 minutes. Isometric strength of the lower extremities before and after intervention was compared by measuring the maximal voluntary isometric contraction of the lower extremity muscles. To compare the balance function, the center of pressure (COP) path-length and COP velocity were measured. Timed Up & Go test (TUG) and 10 Meter Walking Test (10 MWT) were evaluated to compare the gait function. A satisfaction with rehabilitation survey was conducted for subjective evaluation of the subject's satisfaction with the rehabilitation training imparted. RESULTS: In the intra-group comparison, both groups showed significant improvement in lower extremity strength, balance, gait, and satisfaction with rehabilitation, by comparing the parameters before and after the intervention (p < .05). Comparison of the amount of change between groups revealed significant improvement for all parameters in the RTT group, except for the 10 MWT (p < .05). CONCLUSION: Both groups are effective for all variables, but the RTT group showed enhanced efficacy for variables such as lower extremity strength, balance, gait, and satisfaction with rehabilitation, as compared to the BWSTT group.

체간 안정화운동이 정상성인의 균형, 폐활량, 근활성도에 미치는 영향 (A Study on the Effect of Trunk Stabilization Program on Body Balance, Lung Capacity, Muscular Activity of Healthy Adults)

  • 남형천;조윤진;강병주;김슬비;안욱주;이화주;정수진
    • 대한통합의학회지
    • /
    • 제3권4호
    • /
    • pp.43-51
    • /
    • 2015
  • Purpose : This study examines the effect of trunk stabilization program on the body balance, lung capacity, and muscular activity of the rectus abdominis and external oblique of healthy adults. Method : A survey was conducted for 20 students of K University located in the city of Y in Gyeongsangbuk-do Province of Korea. The trunk stabilization program consisted of a hollowing exercise, curl-up, bridging exercise, and birddog exercise. This was performed 14 times in total (7 times a week for two weeks). For analysis, good balance was used to measure both static and dynamic balancing ability. A peak flow meter was used to measure the maximum expiratory flow, and MP150 was used to measure muscular activity of the rectus abdominis and external oblique. Result : After the trunk stabilization program, the participants showed a difference in score and time taken to achieve static and dynamic balance, and muscular activity of the rectus abdominis and external oblique at a statistically significant level (p<0.05). However, no significant difference was observed in the left-to-right distance and front-to-back distance in a dynamic balance, and the lung capacity (p>0.05). Conclusion : The results showed that the trunk stabilization program was effective in enhancing both static and dynamic balancing ability and muscular activity. It also increased the lung capacity although the change was not at a statistically significant level.

엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계 (Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment)

  • 김병준;부광석;김흥섭
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.307-313
    • /
    • 2022
  • 차량 실내소음이 엔진의 고출력화와 경량화로 인해 더욱 심각해져 엔진진동의 저감의 중요성이 높아지고 있다. 최근 엔진진동 저감의 대표적인 방법으로 밸런스샤프트 부착이 제시되고 있다. 밸런스샤프트는 피스톤과 콘로드 등의 왕복운동에서 발생하는 진동을 임의의 편심질량을 이용하여 상쇄시키는 장치이다. 따라서 밸런스샤프트는 연비향상 및 차량의 승차감을 동시에 향상시킬 수 있다. 본 논문은 엔진구조로 인해 발생하는 관성력을 유도하고 이를 상쇄하기 위한 밸런스샤프트의 불평형량과 형상을 제시한다. 제시된 두가지 형상의 밸런스샤프트를 ADAMS 다물체동역학 모델로 구현하고, 이를 동역학 시뮬레이션을 통해 실제 거동상태에서의 관성력의 저감을 확인하였다.

키네시오 테이핑과 발목관절 근력 운동이 균형지수에 미치는 변화 (The Change in Postural Balance Index by Kinesio Taping and Muscle Strength Exercises on Ankle Joint)

  • 김명훈;이정훈;김찬규
    • The Journal of Korean Physical Therapy
    • /
    • 제21권3호
    • /
    • pp.69-74
    • /
    • 2009
  • Purpose: This study examined that effect of a change in balance index on ankle Kinesio taping, muscle strength exercises and taping after muscle strength exercises in 30 healthy adult subjects. Methods: The Sway Index of the left, right, front and back on stable, toes up and linear were compared using a Balance System, a balance experimental instrument. Results: The pre and post experimental balance index regarding stable, toes up, and linear were taken for the Kinesio taping group, lower extremities muscle strengthening group, and muscle strengthening with the Kinesio taping group. Statistically significant decreases were observed in all variables except for the left and right pre and post experiment results under stable conditions. Conclusion: The balance index of exercise with taping was lower than that of exercise only. There is a need for objective research on the long-term applications and post-exercise. The body balance appears to be influenced by ankle stabilization using taping.

  • PDF

전방향 동요 시 압력중심의 기구학적 특성을 통한 하이힐 착용 여성의 자세균형회복 메커니즘에 관한 고찰 (The investigation of postural balance recovery mechanism of high-heeled women using COP's kinematic characteristics during the waist pulling)

  • 조원학;서민좌;최현기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1211-1214
    • /
    • 2004
  • High-heeled women have been identified with balance control problems. The purposes of this study were to objectively quantify the displacements and velocities of center-of-pressure (COP) of body during waist pulling and to compare the differences between barefooted and high-heeled situations. We used a waist pulling system which has three different magnitudes to sway the subjects. We found that the kinematic information of barefooted and high-heeled women's COP is very important in understanding the mechanism of postural balance control of women in every-day life. In the high-heeled's case, the displacement of COP increases in 200% as against bare footed. Also the velocity variation of COP grows three times than the bare footed. COP analysis in postural balance study of high-heeled women is also considered useful in development of the safety systems that prevent high-heeled women from falling

  • PDF

생체모사를 통한 보행로봇의 균형감에 관한 연구 (Biomimetic Balancing Mechanism for Walking Robot)

  • 김종진;정성엽
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.55-59
    • /
    • 2014
  • A cat is able to quickly recover balance from unstable posture. To observe the balance recovery procedure of the cat, an impulse is applied to the cat while walking on a narrow bridge. We find that it rotates its tail toward the falling direction. In our previous research, the balance recovery procedure is analyzed based on the law of the angular momentum conservation and then a key equation is derived to maintain the balance. However, it did not consider the gravity, so the performance is not good. In this paper, a new dynamic model is proposed using the Lagrangian mechanics. In the method, the gravity is included in the potential energy. Through the proposed dynamic model, controlling the balance of a walking robot is possible.

음양균형의학으로서의 기능신경학(FN) 개요 (Introduction to the Functional Neurology, as a Yin-Yang Balance Based Approach)

  • 인창식
    • 턱관절균형의학회지
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 2017
  • Functional neurology is a function-oriented clinical neurology with a focus on the viability, functionality, and balance of the neurologic system, which may be considered as a form of yin-yang balance medicine like Korean medicine. While it incorporates knowledge systems such as developmental neurology, neuropsychology, comparative neuroanatomy, and others, it views the neurologic system and the body as an individually different, self-regulating mechanism with the help of the active balancing mechanism within the nervous system and between the individual and the environment, which view is at the core of its effort to improve and serve the human dignity based on the best possible functioning nervous system. This article reviews core concepts of the functional neurology, discusses yin-yang balance medicine perspectives and clinical applications of it.

  • PDF

마우스 가드가 신체 균형에 미치는 영향 (Effect on Body Balance due to mouth guard)

  • 원현진;김치영;최성민
    • 대한치과기공학회지
    • /
    • 제37권2호
    • /
    • pp.63-67
    • /
    • 2015
  • Purpose: This study, it was observed on the effect of material and thickness of the mouth guard on postural balance in order to assess the influence of the use of a mouth guard. Methods: The mouth guards of 10 adults selected as the experiment subject was sorted into each of hard and soft material, and these were made as thickness of 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm by each of the material. Results: The results of this study are expected to wear the mouthguard hard to influence positive influence on the improvement of the muscle strength, static balance. Conclusion: Suggest the need for additional research on dynamic balance.

뇌졸중 환자의 정적, 동적 선자세 균형 대칭성과 보행 기능의 상관관계 연구 (A Study on the Correlation between Static, Dynamic Standing Balance Symmetry and Walking Function in Stroke)

  • 김중휘
    • The Journal of Korean Physical Therapy
    • /
    • 제24권2호
    • /
    • pp.73-81
    • /
    • 2012
  • Purpose: The aim of the present study was to measure the standing balance symmetry of stroke patients using a force-plate with computer system, and to investigate the correlation between the standing balance symmetry and that of the walking function in stroke patients. Methods: 48 patients with stroke (34 men, 14 women, $56.8{\pm}11.72$ years old) participated in this study. Static standing balance was evaluated by the weight distribution on the affected and the nonaffected lower limbs, sway path, sway velocity, and sway frequency, which reflected the characteristic of body sway in quiet standing. Dynamic standing balance was evaluated by anteroposterior and mediolateral sway angle, which revealed the limit of stability during voluntary weight displacement. Symmetry index of static standing balance, (SI-SSB) calculated by the ratio of the affected weight distribution for the nonaffected weight distribution, and symmetric index of dynamic standing balance (SI-SDB) by the ratio of the affected sway angle for the nonaffected sway angle. Functional balance assessed by a Berg balance scale (BBS), and the functional walking by 10m walking velocity, as well as the modified motor assessment scale (mMAS). Results: Static balance scales and SI-SSB was the only correlation with BBS (p<0.05). Dynamic balance scales and SI-DSB, not only was correlated with BBS, but also with 10m walking velocity and mMAS (p<0.01). Additionally, there was a significant difference between SI-SSB and that of SI-DSB (p<0.01). Conclusion: The balance and the walking function relate to real life in the stroke showed strong relationships with the dynamic standing balance symmetry in the frontal plane and the ability of anterior voluntary weight displacement in sagittal plane.

FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구 (3D Simulation Study of Biped Robot Balance Using FPE Method)

  • 장태호;김영식;류봉조
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.815-819
    • /
    • 2018
  • 본 논문에서는 Foot Placement Estimator (FPE)를 사용하여 point foot을 갖는 이족 로봇의 3차원 시뮬레이션을 진행하고 이족로봇의 균형유지를 연구하였다. FPE 방법은 에너지 보존에 근거한 제어 방법으로서 보행 중인 로봇의 모든 에너지가 위치 에너지로 변환되는 지점에 로봇이 발을 디뎌 몸체가 넘어지지 않고 균형을 유지하며 이동하도록 하는 제어방법이다. 본 연구에서는 로봇이 이동하지는 않고 제자리에서 균형을 유지하며 서 있는 시뮬레이션을 진행하였다. 이를 위해 point foot을 갖는 6자유도 이족 로봇을 모델링하였으며 바닥과의 접촉 및 마찰 환경을 구현하였다. 로봇의 무게는 1kg이며 지면과 무게 중심점과의 거리는 1m로, 무게중심점은 로봇 몸체의 정 중앙에 위치하도록 설계하였다. 다음으로 로봇 몸체의 각속도와 직선속도 그리고 무게 중심점의 높이로 부터 FPE 지점을 계산하고 로봇이 해당 지점을 디뎌 균형을 유지하게 끔 하였다. 몸체의 초기 각도를 $5^{\circ}$, $-5^{\circ}$로 변화시키며 시뮬레이션 한 결과, 모든 초기 조건에서 로봇이 쓰러지지 않고 자세의 균형을 유지하며 서 있는 것을 확인할 수 있었다.