• Title/Summary/Keyword: body balance

Search Result 1,181, Processing Time 0.025 seconds

Comparison of Robotic Tilt-table Training and Body Weight Support Treadmill Training on Lower Extremity Strength, Balance, Gait, and Satisfaction with Rehabilitation, in Patients with Subacute Stroke (아급성기 뇌졸중 환자의 다리근력, 균형, 보행, 재활만족도에 대한 로봇 보조 기립경사대 훈련과 체중지지 트레드밀 훈련의 효과 비교)

  • Kwon, Seung-Chul;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.163-174
    • /
    • 2020
  • PURPOSE: This study examined the effects of Robot Tilt-table Training (RTT) on the lower extremity strength, balance, gait, and satisfaction with rehabilitation, in patients with subacute stroke (less than six months after stroke onset), and requiring intensive rehabilitation. METHODS: A total of 29 subacute stroke patients were divided into an RTT group (n = 14) and a Body Weight Support Treadmill Training (BWSTT) group (n = 15). The mean age of patients was 62 years. RTT and BWSTT were performed for four weeks, three times a week, for 30 minutes. Isometric strength of the lower extremities before and after intervention was compared by measuring the maximal voluntary isometric contraction of the lower extremity muscles. To compare the balance function, the center of pressure (COP) path-length and COP velocity were measured. Timed Up & Go test (TUG) and 10 Meter Walking Test (10 MWT) were evaluated to compare the gait function. A satisfaction with rehabilitation survey was conducted for subjective evaluation of the subject's satisfaction with the rehabilitation training imparted. RESULTS: In the intra-group comparison, both groups showed significant improvement in lower extremity strength, balance, gait, and satisfaction with rehabilitation, by comparing the parameters before and after the intervention (p < .05). Comparison of the amount of change between groups revealed significant improvement for all parameters in the RTT group, except for the 10 MWT (p < .05). CONCLUSION: Both groups are effective for all variables, but the RTT group showed enhanced efficacy for variables such as lower extremity strength, balance, gait, and satisfaction with rehabilitation, as compared to the BWSTT group.

A Study on the Effect of Trunk Stabilization Program on Body Balance, Lung Capacity, Muscular Activity of Healthy Adults (체간 안정화운동이 정상성인의 균형, 폐활량, 근활성도에 미치는 영향)

  • Nam, Hyoungchun;Jo, Yoonjin;Kang, Byeongjoo;Kim, Seulbi;An, Wookjoo;Lee, Hwajoo;Jeong, Sujin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.43-51
    • /
    • 2015
  • Purpose : This study examines the effect of trunk stabilization program on the body balance, lung capacity, and muscular activity of the rectus abdominis and external oblique of healthy adults. Method : A survey was conducted for 20 students of K University located in the city of Y in Gyeongsangbuk-do Province of Korea. The trunk stabilization program consisted of a hollowing exercise, curl-up, bridging exercise, and birddog exercise. This was performed 14 times in total (7 times a week for two weeks). For analysis, good balance was used to measure both static and dynamic balancing ability. A peak flow meter was used to measure the maximum expiratory flow, and MP150 was used to measure muscular activity of the rectus abdominis and external oblique. Result : After the trunk stabilization program, the participants showed a difference in score and time taken to achieve static and dynamic balance, and muscular activity of the rectus abdominis and external oblique at a statistically significant level (p<0.05). However, no significant difference was observed in the left-to-right distance and front-to-back distance in a dynamic balance, and the lung capacity (p>0.05). Conclusion : The results showed that the trunk stabilization program was effective in enhancing both static and dynamic balancing ability and muscular activity. It also increased the lung capacity although the change was not at a statistically significant level.

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment (엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계)

  • Kim, Byeong Jun;Boo, Kwang Suk;Kim, Heung Seob
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

The Change in Postural Balance Index by Kinesio Taping and Muscle Strength Exercises on Ankle Joint (키네시오 테이핑과 발목관절 근력 운동이 균형지수에 미치는 변화)

  • Kim, Myung-Hoon;Lee, Jeong-Hun;Kim, Chan-Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.69-74
    • /
    • 2009
  • Purpose: This study examined that effect of a change in balance index on ankle Kinesio taping, muscle strength exercises and taping after muscle strength exercises in 30 healthy adult subjects. Methods: The Sway Index of the left, right, front and back on stable, toes up and linear were compared using a Balance System, a balance experimental instrument. Results: The pre and post experimental balance index regarding stable, toes up, and linear were taken for the Kinesio taping group, lower extremities muscle strengthening group, and muscle strengthening with the Kinesio taping group. Statistically significant decreases were observed in all variables except for the left and right pre and post experiment results under stable conditions. Conclusion: The balance index of exercise with taping was lower than that of exercise only. There is a need for objective research on the long-term applications and post-exercise. The body balance appears to be influenced by ankle stabilization using taping.

  • PDF

The investigation of postural balance recovery mechanism of high-heeled women using COP's kinematic characteristics during the waist pulling (전방향 동요 시 압력중심의 기구학적 특성을 통한 하이힐 착용 여성의 자세균형회복 메커니즘에 관한 고찰)

  • 조원학;서민좌;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1211-1214
    • /
    • 2004
  • High-heeled women have been identified with balance control problems. The purposes of this study were to objectively quantify the displacements and velocities of center-of-pressure (COP) of body during waist pulling and to compare the differences between barefooted and high-heeled situations. We used a waist pulling system which has three different magnitudes to sway the subjects. We found that the kinematic information of barefooted and high-heeled women's COP is very important in understanding the mechanism of postural balance control of women in every-day life. In the high-heeled's case, the displacement of COP increases in 200% as against bare footed. Also the velocity variation of COP grows three times than the bare footed. COP analysis in postural balance study of high-heeled women is also considered useful in development of the safety systems that prevent high-heeled women from falling

  • PDF

Biomimetic Balancing Mechanism for Walking Robot (생체모사를 통한 보행로봇의 균형감에 관한 연구)

  • Kim, Jong Jin;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.55-59
    • /
    • 2014
  • A cat is able to quickly recover balance from unstable posture. To observe the balance recovery procedure of the cat, an impulse is applied to the cat while walking on a narrow bridge. We find that it rotates its tail toward the falling direction. In our previous research, the balance recovery procedure is analyzed based on the law of the angular momentum conservation and then a key equation is derived to maintain the balance. However, it did not consider the gravity, so the performance is not good. In this paper, a new dynamic model is proposed using the Lagrangian mechanics. In the method, the gravity is included in the potential energy. Through the proposed dynamic model, controlling the balance of a walking robot is possible.

Introduction to the Functional Neurology, as a Yin-Yang Balance Based Approach (음양균형의학으로서의 기능신경학(FN) 개요)

  • Yin, Chang Shik
    • Journal of TMJ Balancing Medicine
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Functional neurology is a function-oriented clinical neurology with a focus on the viability, functionality, and balance of the neurologic system, which may be considered as a form of yin-yang balance medicine like Korean medicine. While it incorporates knowledge systems such as developmental neurology, neuropsychology, comparative neuroanatomy, and others, it views the neurologic system and the body as an individually different, self-regulating mechanism with the help of the active balancing mechanism within the nervous system and between the individual and the environment, which view is at the core of its effort to improve and serve the human dignity based on the best possible functioning nervous system. This article reviews core concepts of the functional neurology, discusses yin-yang balance medicine perspectives and clinical applications of it.

  • PDF

Effect on Body Balance due to mouth guard (마우스 가드가 신체 균형에 미치는 영향)

  • Won, Hyeon-Jin;Kim, Chi-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.37 no.2
    • /
    • pp.63-67
    • /
    • 2015
  • Purpose: This study, it was observed on the effect of material and thickness of the mouth guard on postural balance in order to assess the influence of the use of a mouth guard. Methods: The mouth guards of 10 adults selected as the experiment subject was sorted into each of hard and soft material, and these were made as thickness of 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm by each of the material. Results: The results of this study are expected to wear the mouthguard hard to influence positive influence on the improvement of the muscle strength, static balance. Conclusion: Suggest the need for additional research on dynamic balance.

A Study on the Correlation between Static, Dynamic Standing Balance Symmetry and Walking Function in Stroke (뇌졸중 환자의 정적, 동적 선자세 균형 대칭성과 보행 기능의 상관관계 연구)

  • Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • Purpose: The aim of the present study was to measure the standing balance symmetry of stroke patients using a force-plate with computer system, and to investigate the correlation between the standing balance symmetry and that of the walking function in stroke patients. Methods: 48 patients with stroke (34 men, 14 women, $56.8{\pm}11.72$ years old) participated in this study. Static standing balance was evaluated by the weight distribution on the affected and the nonaffected lower limbs, sway path, sway velocity, and sway frequency, which reflected the characteristic of body sway in quiet standing. Dynamic standing balance was evaluated by anteroposterior and mediolateral sway angle, which revealed the limit of stability during voluntary weight displacement. Symmetry index of static standing balance, (SI-SSB) calculated by the ratio of the affected weight distribution for the nonaffected weight distribution, and symmetric index of dynamic standing balance (SI-SDB) by the ratio of the affected sway angle for the nonaffected sway angle. Functional balance assessed by a Berg balance scale (BBS), and the functional walking by 10m walking velocity, as well as the modified motor assessment scale (mMAS). Results: Static balance scales and SI-SSB was the only correlation with BBS (p<0.05). Dynamic balance scales and SI-DSB, not only was correlated with BBS, but also with 10m walking velocity and mMAS (p<0.01). Additionally, there was a significant difference between SI-SSB and that of SI-DSB (p<0.01). Conclusion: The balance and the walking function relate to real life in the stroke showed strong relationships with the dynamic standing balance symmetry in the frontal plane and the ability of anterior voluntary weight displacement in sagittal plane.

3D Simulation Study of Biped Robot Balance Using FPE Method (FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구)

  • Jang, Tae-ho;Kim, Youngshik;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, we investigate balance of a biped robot applying Foot Placement Estimator (FPE) in simulation. FPE method is used to determine a stable foot location for balancing the biped robot when an initial orientation of the robot body is statically unstable. In this case, the 6-DOF biped robot with point foot is modelled considering contact and friction between foot and the ground. For simulation, the mass of the robot is 1 kg assuming the center of robot mass (COM) is located at the center of the robot body. The height from the ground to the COM is 1 m. Robot balance is achieved applying stable foot locations calculated from FPE method using linear and angular velocities, and the height of the COM. The initially unstable angular postures, $5^{\circ}$ and $-5^{\circ}$, of the robot body are simulated. Simulation results confirm that the FPE method provides stable balance of the robot for all given unstable initial conditions.