• Title/Summary/Keyword: body angles

Search Result 425, Processing Time 0.025 seconds

A Morphologocal Study of the Angle of Costal Arch according to the Sasang Constitution (사상체질에 따른 늑골각의 형태학적 연구)

  • Lee, Hee-Seung;Park, Seong-Sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.20 no.1
    • /
    • pp.48-55
    • /
    • 2008
  • 1. Objectives To examine appearances and body shapes is essential of diagnosing Sasang constitution. Although there are many parts and ways to examine appearances, examination of abdomen would be so necessary and important. We focused on angles of costal arch according to Sasang constitution so that we can find some specialty of each constitution. 2. Methods We measured the angles of costal arch of 173 participants who were diagnosed as Sasang constitution after treatments and analyzed by ANOVA and using Scheffe’s t-test or t-test for some independent parameters. 3. Results and Conclusions 81 Taeumin’s mean costal angle is $93.64^{\circ}$ to be the widest one. 51 Soyangin have $87.27^{\circ}$ mean angle of costal arch to be the second widest one. The next one is Taeyangin’s mean angle of costal arch as $81.66^{\circ}$ but the number of them were only 3. The sharpest costal angle which is $71.02^{\circ}$ is owned by 38 Soeumin. Male participants have wider costal arch than female in all the constitutional groups.

  • PDF

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

Measurement of Drape Appearance Similarity between Real and Digital Stretch Fabric

  • Kim, Hyeon-Ah;Lim, Ho-Sun
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.645-654
    • /
    • 2021
  • This study aimed to visually compare the implementation of digital virtual fabrics for stretch fabrics mainly used in clothing that closely touch the body, using CLO. A digital fabric was used in CLO after measuring the weight, thickness, bending, and tensile force of five adhering clothing fabrics using a CLO fabric kit. The visual similarity of draftability was compared by measuring the area of the bending angle and the shape of the wrinkles of the real and digital fabric. A comparison of the bending angles showed that Fabric A was -0.75° and Fabric D was -2.5°, showing slightly lower drape properties than the real fabric. Meanwhile, Fabric B was 2.75°, Fabric C was 2.13°, and Fabric E was 1.375°, showing slightly higher drape properties in the vertical direction than the real fabric. Comparing the widths of the drape shapes, Fabric A was 0.77%, Fabric B was 1.27%, Fabric C was 0.06%, and Fabric E was 1.48%, which showed a slight difference. Fabric D showed a difference of 3.17% and was implemented where the digital fabric spread a little wider. As a result, the stretch fabric was visually expressed similarly to the real fabric as a whole in CLO. For 3D virtual clothing technology to be used widely in the close clothing industry in the future, more research on real clothing is needed.

Three-dimensional human activity recognition by forming a movement polygon using posture skeletal data from depth sensor

  • Vishwakarma, Dinesh Kumar;Jain, Konark
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.286-299
    • /
    • 2022
  • Human activity recognition in real time is a challenging task. Recently, a plethora of studies has been proposed using deep learning architectures. The implementation of these architectures requires the high computing power of the machine and a massive database. However, handcrafted features-based machine learning models need less computing power and very accurate where features are effectively extracted. In this study, we propose a handcrafted model based on three-dimensional sequential skeleton data. The human body skeleton movement over a frame is computed through joint positions in a frame. The joints of these skeletal frames are projected into two-dimensional space, forming a "movement polygon." These polygons are further transformed into a one-dimensional space by computing amplitudes at different angles from the centroid of polygons. The feature vector is formed by the sampling of these amplitudes at different angles. The performance of the algorithm is evaluated using a support vector machine on four public datasets: MSR Action3D, Berkeley MHAD, TST Fall Detection, and NTU-RGB+D, and the highest accuracies achieved on these datasets are 94.13%, 93.34%, 95.7%, and 86.8%, respectively. These accuracies are compared with similar state-of-the-art and show superior performance.

The Development of Exercise Accuracy Measurement Algorithm Supporting Personal Training's Exercise Amount Improvement

  • Oh, Seung-Taek;Kim, Hyeong-Seok;Lim, Jae-Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.57-67
    • /
    • 2022
  • The demand for personal training (PT), through which high exercise effects can be achieved within short-term, has recently increased. PT can achieve an exercise amount improvement effect, only if accurate postures are maintained upon performing PT, and exercise with inaccurate postures can cause injuries. However, research is insufficient on exercise amount comparisons and judging exercise accuracy on PT. This study proposes an exercise accuracy measurement algorithm and compares differences in exercise amounts according to exercise postures through experiments using a respiratory gas analyzer. The exercise accuracy measurement algorithm acquires Euler anglesfrom major body parts operated upon exercise through a motion device, based on which the joint angles are calculated. By comparing the calculated joint angles with each reference angle in each exercise step, the status of exercise accuracy is judged. The calculated results of exercise accuracy on squats, lunges, and push-ups showed 0.02% difference in comparison with actually measured results through a goniometer. As a result of the exercise amount comparison experiment according to accurate posture through a respiratory gas analyzer, the exercise amount was higher by 45.19% on average in accurate postures. Through this, it was confirmed that maintaining accurate postures contributes to exercise amount improvement.

Effect of an 8-week Closed Kinetic Chain Styled Pilates Exercise on Lower Limb Alignment (8주간 닫힌 사슬형 필라테스 운동이 하지 정렬에 미치는 영향)

  • Ga Ram Jeon;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.128-136
    • /
    • 2023
  • Objective: The aim of this study was to investigate the effect of an 8-week closed kinetic chain typed Reformer and Chair Pilates exercise on static and dynamic lower limb alignment for healthy female adults. Method: Ten healthy young female adults without musculoskeletal injury history in last 6 months (Age: 29.3 ± 3.5 yrs., Height: 165 ± 3.4 cm, Body mass: 58.2 ± 5.4 kg) participated in this study. All participants asked to join the 8-week closed kinetic chain typed Reformer and Chair Pilates exercise, and the program was conducted for 60 minutes twice a week. Participants were asked to be measure a static Q-angle and performed free squat one week before and after the program. A 3-D motion analysis with 8 infrared cameras and 5 channels of EMG was executed in this study. The effectiveness of the training was evaluated by paired t-test, and the significance level was set at .05. Results: A significantly decreased in internal rotation angles was found at hip joint during free squat after the training. Also, significantly decreased in lateral rotation angles were found at knee and ankle joint during free squat after training. Finally, significantly decreased in muscle activations were found at adductor longus and peroneus longus during free squat after training. Conclusion: From results of our study, it is concluded that an 8-week closed kinetic chain typed Pilates exercise positively effect on lower limb alignment during dynamic movement.

The Analysis of the Lower Part of Dress Forms Using Three-Dimensional Measurement System (3차원 형상 계측에 의한 인대의 하반신 형태 파악)

  • Lee, Myung-Hee;Jung, Hee-Kyeong
    • Korean Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.303-312
    • /
    • 2005
  • The purpose of this research is to analyze the lower part of dress forms with different sectional rotation-angles ($e.g.\;9^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ}$) using three-dimensional measurement system and to investigate measurement properties for dress making. The dress forms used in this experiment were size 8 and six types: four from Korea and two from Japan. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner (Exyma-WBS2H). The analysis program used in this experiment was Rapid Form 2004 PP1 (INUS technology, Inc, Korea). The measurement of dress forms was done three times with different sectional rotation-angles and its data were analyzed using SPSS WIN 10.0 Package. The following results were obtained: 1. With mean and standard deviation of each measured part, it was found out that the dress forms from two countries were different in size per each part. For example, the Japanese one was relatively large in middle hip and hip, compared to the Korean one. 2. The 3D analysis of the sectional rotation-angles revealed some differences between the two dress forms in sectional length per each part. 3. With cluster analysis results, it was found that there were definite differences among measurements per each part, especially in $30^{\circ}\;and\;45^{\circ}$ sections. 4. The proportion of the dress forms showed significant differences in the curvature between center and side section of the lower parts. In addition, the shapes on the horizontal section map of the four levels (waist, middle hip, hip, and bottom) were analyzed.

  • PDF

Development of a vaccine automation injection system for flatfish using a template matching (템플릿 매칭을 이용한 넙치용 백신자동접종시스템 개발)

  • Lee, Dong-Gil;Yang, Young-Su;Park, Seong-Wook;Cha, Bong-Jin;Xu, Guo-Cheng;Kim, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.165-173
    • /
    • 2012
  • Nationally, flatfish vaccination has been performed manually, and is a laborious and time-consuming procedure with low accuracy. The handling requirement also makes it prone to contamination. With a view to eliminating these drawbacks, we designed an automatic vaccine system in which the injection is delivered by a Cartesian coordinate robot guided by a vision system. The automatic vaccine injection system is driven by an injection site location algorithm that uses a template-matching technique. The proposed algorithm was designed to derive the time and possible angles of injection by comparing a search area with a template. The algorithm is able to vaccinate various sizes of flatfish, even when they are loaded at different angles. We validated the performance of the proposed algorithm by analyzing the injection error under randomly generated loading angles. The proposed algorithm allowed an injection rate of 2000 per hour on average. Vaccination of flatfish with a body length of up to 500mm was possible, even when the orientation of the fish was random. The injection errors in various sizes of flatfish were very small, ranging from 0 to 0.6mm.

A study on the sleeve angles and gusset for the improvement of movability in a basic Kimono sleeve - Focusing on the standard body type in their thirties - (기모노 슬리브 원형의 가동성 향상을 위한 슬리브 각도와 거싯 연구 - 30대 표준체형을 중심으로 -)

  • Kwon, Soon Kyo;Jeong, Jae Chul;Park, Sun Kyung
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.5
    • /
    • pp.742-754
    • /
    • 2013
  • This study aims to conduct a investigation on the gusset of a Kimono sleeve to achieve excellent movability through an evaluation of its fit wearing by conducting comparative research in terms of the length of the gusset pattern according to sleeve angle, which having a great effect on the wearing and activity of the top of a Kimono sleeve. A prototype was manufactured by developing the basic Kimono sleeve based on the method of Ernestine Kopp's basic bodice pattern. The sleeve angles which was applied to the prototype pattern of the Kimono sleeve ware approximately $50^{\circ}$, $70^{\circ}$ and the gusset was diamond-shaped which has a width of 10cm and lengths of 9cm, 10cm and 11cm. As a result, in the case of $55^{\circ}$ of the sleeve angle, the angle was gradually increased as the length of gusset was extended, although, in the case of $68^{\circ}$ of the sleeve angle, there was not remarkable effects between increased gusset length and the value of the angle. This result could be analyzed that the gusset did not affect remarkably since the sufficient movability was gained with only the angle in the case of $68^{\circ}$. Also, in the results of experiment on $55^{\circ}$ angle, as 9cm, 10cm and 11cm of length of gusset commonly indicated over $70^{\circ}$ in average, it was found that the movability was obtained sufficiently in every part.

Research on the Effect of Car Body Design on CFD Aerodynamics Performance (자동차 차체 형태 디자인이 공기역학 성능에 미치는 영향에 대한 연구)

  • Kim, Jeong Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.501-506
    • /
    • 2020
  • In this experimental study, we have analyzed aerodynamic performance of the four representative types of passenger car vehicles, different types of side window angles, different types of engine hood angles, and the angle difference of the roof line in order to comprehensively analyze how the aerodynamic performance varies with different shape of vehicle. Experiment results showed that the rear window falling at aa certain angle lowered aerodynamic performance, angle difference of the lowered roof line did not affect aerodynamic performance, and the back window line falling at certain angles had no visible effect on aerodynamic performance. Back window line leaning towards front side may help enhance styling aesthetics, but aerodynamic performance decreased. In case of rear diffuser installation, aerodynamic performance also decreased.