• Title/Summary/Keyword: bluff-body aerodynamics

Search Result 10, Processing Time 0.01 seconds

Bluff body asymmetric flow phenomenon - real effect or solver artefact?

  • Prevezer, Tanya;Holding, Jeremy;Gaylard, Adrian;Palin, Robert
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.359-368
    • /
    • 2002
  • This paper describes a CFD investigation into the flow over the cab of a bluff-fronted lorry. Several different simulations were undertaken, using the commercial codes: CFX, Fluent and PowerFLOW. Using the $k-{\varepsilon}$ turbulence model, the flow over the cab was symmetric, however, using more accurate turbulence models such as the RNG $k-{\varepsilon}$ model or the Reynolds Stress Model, the flow was asymmetric. The paper discusses whether this phenomenon is a real effect or whether it is a solver artefact and the study is supported by experimental evidence. The findings are preliminary, but suggest that it has a physical origin and that it may be aspect ratio-dependent.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

Numerical Analysis on Flow Field Around a Bluff Body by LES(I) (LES에 의한 사각형 Bluff Body 주위 유동장 수치해석(I))

  • Jang, D.S.;Lee, Y.W.;Doh, D.H.;Bae, D.S.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.40-47
    • /
    • 2000
  • The turbulent flow with wake, reattachment and recirculation flow is very important from the viewpoint of engineering. But that is still difficult because of especially the unsteady problems which are related with the vehicle dynamics and the aerodynamics noise. This paper evaluate LES that can analyze about all fluid flow region including the laminar, transition and turbulent. So we compare the results of LES with those of PIV measurement and Reynolds averaging models. In conclusion, LES predicts flow behavior better than Reynolds averaging models.

  • PDF

Turbulence effects on surface pressures of rectangular cylinders

  • Li, Q.S.;Melbourne, W.H.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1999
  • This paper presents the effects of free-stream turbulence on streamwise surface pressure fluctuations on two-dimensional rectangular cylinders. Particular attention is given to possible effects of turbulence integral scale on fluctuation and peak pressures. The mean, standard deviation, peak pressure coefficients, spectra and cross-correlation of fluctuating pressures were measured to investigate the nature of the separation and reattachment phenomenon in turbulent flows over a wide range of turbulence intensity and integral scale.

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows

  • Bertani, Gregorio;Patruno, Luca;Aguera, Fernando Gandia
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.499-510
    • /
    • 2022
  • Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Effects of wind direction on the flight trajectories of roof sheathing panels under high winds

  • Kordi, Bahareh;Traczuk, Gabriel;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.145-167
    • /
    • 2010
  • By using the 'failure' model approach, the effects of wind direction on the flight of sheathing panels from the roof of a model house in extreme winds was investigated. A complex relationship between the initial conditions, failure velocities, flight trajectories and speeds was observed. It was found that the local flow field above the roof and in the wake of the house have important effects on the flight of the panels. For example, when the initial panel location is oblique to the wind direction and in the region of separated flow near the roof edge, the panels do not fly from the roof since the resultant aerodynamic forces are small, even though the pressure coefficients at failure are high. For panels that do fly, wake effects from the building are a source of significant variation of flight trajectories and speeds. It was observed that the horizontal velocities of the panels span a range of about 20% - 95% of the roof height gust speed at failure. Numerical calculations assuming uniform, smooth flow appear to be useful for determining panel speeds; in particular, using the mean roof height, 3 sec gust speed provides a useful upper bound for determining panel speeds for the configuration examined. However, there are significant challenges for estimating trajectories using this method.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.