• 제목/요약/키워드: blue light-emitter

검색결과 25건 처리시간 0.034초

Highly Efficient Multi-Functional Material for Organic Light-Emitting Diodes; Hole Transporting Material, Blue and White Light Emitter

  • Kim, Myoung-Ki;Kwon, Jong-Chul;Hong, Jung-Pyo;Lee, Seong-Hoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2899-2905
    • /
    • 2011
  • We have demonstrated that TPyPA can be used as an efficient multi-functional material for OLEDs; hole transporting material (HTL), blue and white-light emitter. The device based on TPyPA as the HTL exhibited an external quantum efficiency of 1.7% and a luminance efficiency of 4.2 cd/A; these values are 40% higher than the external quantum efficiency and luminance efficiency of the NPD-based reference device. The device based on TPyPA as a blue-light emitter exhibited an external quantum efficiency of 4.2% and a luminance efficiency of 5.3 $cdA^{-1}$ with CIE coordinates at (0.16, 0.14), the device based on TPyPA as a white-light emitter exhibited an external quantum efficiency of 3.2% and a luminance efficiency of 7.7 $cdA^{-1}$ with CIE coordinates at (0.33, 0.39). Also, TPyPA-based organic solar cell (OSC) exhibited a maximum power conversion efficiency of 0.35%. TPyPA-based organic thin-film transistors (OTFTs) exhibited highly efficient field-effect mobility (${\mu}_{FET}$) of $1.7{\times}10^{-4}cm^2V^{-1}s^{-1}$, a threshold voltage ($V_{th}$) of -15.9 V, and an on/off current ratio of $8.6{\times}10^3$.

Synthesis and EL Properties of Blue Light-emitting Poly(arylenevinylene)s

  • Hwang, Do-Hoon
    • Journal of Information Display
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 2002
  • A series of fully conjugated polymers containing new arylenevinylene units were synthesized and their light-emitting properties were investigated. A bisphosphonate containing tetraphenyl group was made to react with three different dialdehyde monomers to produce fully conjugated alternating copolymers. The photoluminescence (PL) and the electroluminescence (EL) peak wavelengths of the polymers were varied from 500 nm to 460 nm depending on the polymer structure. Single layer EL devices using the polymers as an emissive layer have been fabricated. The single layer EL devices became visible between 12-22 V and emitted blue light.

Color stable and efficient white organic light emitting diodes with phosphorescent emitters

  • Lee, Hyun-Koo;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.415-417
    • /
    • 2009
  • Color stable and efficient two wavelength white organic light emitting diodes (OLEDs) were fabricated using a iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,$C^2$'] picolinate (FIrpic) as a blue phosphorescent emitter and a bis(1-phenylisoquinolinato-$C^2$,N)iridium (acetylacetonate) ((piq)$_2$Ir(acac)) as a red phosphorescent emitter. The emitting layers consist of two blue emitting layers and one red emitting layer which is between the two blue layers. The device reaches the peak efficiencies of 7.84 % and 10.3 cd/A at 0.6 mA/$cm^2$. Furthermore, there was little change of EL spectra according to current density change in the device.

  • PDF

Fluorescent White OLEDs with a High Color-rendering Index Using a Silicon-Cored Anthracene Derivative as a Blue Host

  • Kwak, Jeong-Hun;Lyu, Yi-Yeol;Lee, Hyun-Koo;Char, Kook-Heon;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제11권3호
    • /
    • pp.123-127
    • /
    • 2010
  • Fluorescent white organic light-emitting diodes showing high color-rendering indices (CRIs) of up to 81 was demonstrated, with a silicon-cored anthracene derivative (PATSPA) doped with DPAVBi utilized as the deep-blue host and dye materials, and the commercial dyes rubrene and DCM2 utilized as the orange- and red-light-emitting dyes. The devices, consisting of three emissive layers, showed bright-white-light emission, but the ratio of the blue peak to the orange and red peaks changed with the current density and the thickness of the blue emissive layer. A high CRI was achieved with the use of a deep-blue emitter doped in a novel host and by optimizing the blue-layer thickness. The device with a blue-layer thickness of 10 nm showed the Commission Internationale de l'Eclairage (CIE) color coordinate of (0.33, 0.35), a high CRI of 81, and a moderate external quantum efficiency of 2% at a current density of $2.5\;mA/cm^2$.

Highly Efficient Blue Organic Light-emitting Devices Based on Copper Phthalocyanine/Aromatic Diamine Composite Hole Transport Layer

  • Liao, Chi Hung;Tsai, Chih Hung;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.724-726
    • /
    • 2004
  • Highly efficient blue organic light-emitting devices (OLEDs) utilizing the idea of copper phthalocyanine (CuPc)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl- 4,4'-diamine (NPB) composite hole transport layer (CPHTL) have been fabricated. The effect of inserting CPHTL upon the performance of blue OLEDs with 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) as the blue emitter has been investigated. Compared with the luminous efficiency of the standard blue device without CPHTL (1.33 cd/A), that of the device with 40:60 CuPc/NPB CPHTL has been increased by more than twice up to 2.96 cd/A with a Commission Internationale d'Eclairage (CIE) coordinates of(x = 0.15, y = 0.10) and a power efficiency of 1.46 lm/W (20 mA/$cm^2$) at 6.39 V. The increased device efficiency is attributed to an improved balance between hole and electron currents arriving at the recombination zone.

  • PDF

Molecular Design of Novel Conjugated Polymers for Blue-Light-Emitting Devices

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.961-966
    • /
    • 2003
  • A quantum-chemical study of conformations and electronic structures of polyheterocyclic derivatives with vinylenediheteroatom substituents at the 3- and 4-positions was performed to search for novel blue-lightemitting conjugated polymers. Conformational potential energy curves of the polymers were constructed as a function of the helical angle (a) through semiempirical Hartree-Fock band calculations at the Austin model 1 level. It is found that poly(3,4-vinylenedioxythiophene) possesses a quite flat curve in the range of α = 51.4°- 120°. Replacing S atoms for O atoms greatly increases repulsion between the neighboring units, and thereby the units become perpendicular to one another. Because of the hydrogen bonding between O and NH, poly(3,4- vinylenedioxypyrrole) is predicted to be anti-coplanar and poly(3,4-vinylenediaminofuran) to be nearly anticoplanar. According to the modified extended Huckel band calculations, the HOMO-LUMO gaps (HLGs) of the polymers, unless the polymer chains are twisted, are close to or slightly smaller than those of their respective mother polymers. Among the polymers, poly(3,4-vinylenedioxythiophene) is presumed to be the most probable candidate for a blue-light emitter because its HLG is within the range of the electronic requirement for blue-light emitters.

색변환법 유기전계발광 소자용 유기 발광 재료의 합성 및 특성 분석 (Synthesis and Characteristics of Organic Emitting Materials for OLEDs using Color Conversion Method)

  • 곽선엽;류정이;남장현;이태훈;김태훈;손세모
    • 한국인쇄학회지
    • /
    • 제23권1호
    • /
    • pp.77-97
    • /
    • 2005
  • Organic light-emitting diodes(OLEDs) have received considerable attention since they were first reported by Tang. Novel organic fluorescent materials have been reported on synthesis and application of new organic light-emitting materials. Despite of much recent progress, fabrication of full-color OLEDs still remained to be done. Many method have been proposed to full-color OLEDs displays such as using separated red, green and blue emitters, stacking separate rad, green and blue emitter, using a white emitter with individually pattered color filters, microcavity structures and using a blue emitter with individually patterned fluorescent materials. The last method has much attention because of easy fabrication of OLEDs and low-priced fabrication. This paper reports the optical and electrical characteristics of OLEDs using novel molecules containing biphenyl structure. Optical properties of biphenyl derivatives doped with poly(9-vinyl carbazole)(PVK) are measured and found Forster energy transfer process in the blends. And devices were fabricated as ITO/PEDOT/PVK doped with biphenyl derivatives/$Alq_3$/Li:Al and I-V-L characteristics and EL efficiency of devices were examined.

  • PDF

새로운 정공차폐 층 (Hole blocking layer)으로 DCJTB 도핑된 24MeSAlq를 이용한 백색유기발광다이오드 (White Organic Light-Emitting Diodes Using DCJTB-Doped 24MeSAlq as a New Hole-Blocking Layer)

  • 김미숙;임종태;염근영
    • 한국재료학회지
    • /
    • 제16권4호
    • /
    • pp.231-234
    • /
    • 2006
  • To obtain balanced white-emission and high efficiency of the organic light-emitting diodes (OLEDs), a deep blue emitter made of N,N'-diphenyl-N,N'-bis(1-naphthyl)- (1,1'-biphenyl)-4,4'-diamine (NPB) emitter and a new red emitter made of the Bis(2,4 -dimethyl-8-quinolinolato)(triphenylsilanolato)aluminum(III) (24MeSAlq) doped with red fluorescent 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H -pyran (DCJTB) were used and the device was tuned by varying the thickness of the DCJTB-doped 24MeSAlq and $Alq_3$. For the white OLED with 10 nm thickness DCJTB (0.5%) doped 24MeSAlq and 45 nm thick $Alq_3$, the maximum luminance of about 29,700 $Cd/m^2$ could be obtained at 14.8 V. Also, Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.28) at about 100 $Cd/m^2$, which is very close to white light equi-energy point (0.33, 0.33), could be obtained.