• Title/Summary/Keyword: blossom-end rot

Search Result 35, Processing Time 0.021 seconds

Comparison of Antioxidant Activities and Carotenoid Contents Between Marketable and Unmarketable Sweet Pepper Fruits (파프리카 상품과 및 비상품과의 항산화 활성 및 카로티노이드 함량 비교)

  • Yoon, Seungri;Kim, Jin Hyun;Shin, Minju;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.393-400
    • /
    • 2022
  • Postharvest quality of sweet pepper fruits was mainly defined as external appearance, i.e., shape, fruit weight and surface color. These quality traits tend to involve esthetic appeal, it disregards gustatory properties and nutritional value. However, comparative studies according to the marketability of sweet pepper fruits are insufficient. This study was carried out to compare the physicochemical components, antioxidant activity and carotenoid contents of marketable and unmarketable sweet pepper fruits (Capsicum annuum L.). Physicochemical components (proximate composition, minerals and total phenolic contents) and antioxidant activities using various methods were investigated. The proximate composition values (%) of marketable and unmarketable fruits were: moisture (90.28 and 90.29), ash (0.74 and 0.26), crude protein (0.67 and 0.72), crude lipid (0.38 and 0.32). There were no significant differences in antioxidant activity, while total phenolic content was higher in marketable fruit. Carotenoids contents were 29.3 ± 2.6 and 31.9 ± 2.9 ㎍·g-1 in marketable and unmarketable fruits respectively, and identified β-carotene, violaxanthin, neoxanthin, and zeaxanthin. Lutein and capsaicin were not detected. In this study, potential value of unmarketable sweet pepper fruit could be identified to be applied as a food ingredient and functional food material.

A Comparison of Postharvest Physiology and Storability of Paprika Fresh-Cut Made from Disordered and Normal Fruits (착색단고추 생리장해과와 정상과의 수확 후 생리 및 신선편이의 저장성 비교)

  • Yoo, Tae-Jong;Jung, Hyun-Jin;Choi, In-Lee;Kim, Il-Seop;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • The study was conducted to compare the postharvest physiology and storability of fresh cut paprika fruits classified by normal, blossom end rot(BER), and misshapen (or knots) fruit. Some disordered paprika fruits that were produced frequently during high temperature season in highland, were sorted out to non-marketable products. These fruits are mostly wasted, but some of them may be used for fresh cut. The respiration rate of fresh cut paprika fruits was lower and ethylene production rate was higher in normal fruits than in disordered fruits, but there was no significant difference. The fresh-cut paprika fruits were stored in MAP conditions at $4^{\circ}C$, $9^{\circ}C$ and room temperature in 25 ${\mu}m$ and 50 ${\mu}m$ thickness ceramic film packaging. The fresh weight of fresh cut paprika fruits decreased below to 1.1% regardless of fruit types, but the fresh weight loss increased in thinner packaging materials and lower storage temperatures. There were not significant different carbon dioxide and oxygen contents in MAP of all fruit types, while $4^{\circ}C$ storage temperature treatment and 25 ${\mu}m$ thickness ceramic film treatment had lower carbon dioxide and higher oxygen contents. Moreover, the carbon dioxide and oxygen contents were changed rapidly at 9 days in $4^{\circ}C$ storage and at 6 days in $9^{\circ}C$ storage when the visual quality of fresh cut decreased dramatically. The ethylene concentration of packages was below 7 ${\mu}l{\cdot}l^{-1}$ in all treatments during storage, while the treatments of thinner packaging material and lower storage temperature showed lower ethylene concentration. The fresh cut of disordered fruits showed less visual quality than normal fruit treatment in both $4^{\circ}C$ and $9^{\circ}C$ storage temperatures, but there was no significant difference. The value of $4^{\circ}C$ treatment that measured 12 days in storage was higher than $9^{\circ}C$ treatment that measured 9 days in storage. The results suggest that the disordered fruits may be used to fresh cut product without any concerns that they will decreased the value of commodities more quickly than the fresh cut made of marketable paprika fruits. As the fresh cut paprika fruits stored in MAP condition, the more effective storage temperature is $4^{\circ}C$ that may have induced chilling injury a whole fruit of the paprika.

Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation (토양 염류농도가 시설토마토의 생육, 수량, 광합성속도 및 무기양분 흡수에 미치는 영향)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • This study was conducted to investigate the effects of high concentrations of salts in soil on the growth, yield, quality, photosynthetic rate, and mineral uptake of tomato ('House Momotaro') in pot cultivation. The growth of tomato such as plant height, top plant weight and root weight decreased as the concentrations of salts in soils increased. Yield decreased by 31% and 41% in EC 5.0 and $7.5dS{\cdot}m^{-1}$, respectively compared with the salt concentration of EC $1.5dS{\cdot}m^{-1}$. Yield reduction was caused by low mean weight and number of fruit if at high salt concentration in soil, and affected by low photosynthetic rate and water potential in leaf, The rate of blossom-end rot was highest (16.7%) in EC $7.5dS{\cdot}m^{-1}$ and increased as the concentrations of salts in soils increased. The contents of soluble solids and titratable acids showed a tendency to increase with increasing the concentrations of salts in soils. Photosynthetic rate, water potential and stomatal conductance in leaf decreased as the salt concentration in soil increased. The higher the salt concentration in soil, the lower the mineral uptake such as T-N, P, K, Ca and Mg but, the higher the content of Na.

Effect of EC Level of Irrigation Solution on Tomato Growth and Inorganic Ions of Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액 EC가 근권부 무기이온과 생육에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kang, Nam Jun;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.418-423
    • /
    • 2017
  • In hydroponics, the nutrient solution is supplied considering the water and nutrient uptake characteristics of crops. However, as the ionic uptake characteristics are changed as a result of the weather conditions or the growth response of the crops, the root zone can not be maintained in optimal condition. In addition, the coir substrate has been used mainly for the tomato cultivation in place of the inorganic substrate, there are few studies on long-term cultivation using coir substrate. Therefore, this study was conducted to investigate the effect of EC level of irrigation solution on tomato growth and inorganic ions of root zone in soilless culture using coir. Coir substrate mixed with 5 : 5 chip and dust was used. EC level of irrigation solution was 1.0, 1.5, 2.0, and $3.0dS{\cdot}m^{-1}$. At the initial stage, $NO_3-N$, P, Ca and Mg in the drainage were lower than the irrigation level at 1.0 and $1.5dS{\cdot}m^{-1}$. However, EC $2.0dS{\cdot}m^{-1}$ or higher, all the ions except P were highly concentrated in the drainage. The average fruit weight was not significantly different between 1.0 and $1.5dS{\cdot}m^{-1}$ until 3th cluster, but from the next cluster, the higher the EC level, the smaller the weight. The number of fruit and yield to 6th cluster was the highest at $1.5dS{\cdot}m^{-1}$. From the next cluster, The yield was decreased with the higher EC level. At the early stage of growth, BER occurred only in EC $3.0dS{\cdot}m^{-1}$, but increased in all treatments with increasing irradiation. The incidence rate of EC $3.0dS{\cdot}m^{-1}$ was higher than that of the lower EC level treatment.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.