• Title/Summary/Keyword: blood soiled fabrics

Search Result 9, Processing Time 0.027 seconds

The Effects of Protease and Lipase on the Detergency of Fabrics (프로테아제와 리파제가 직물의 세척에 미치는 영향)

  • Lee, Jeong-Sook;Chung, So-Wha
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • The effects of protease and/or lipase on the removal of protein soil and oily soil were investigated in this study. Cotton, rayon, nylon, and PET fabrics were soiled by padding of fresh bovine blood and spotting of mixed artificial sebum evenly. The soiled fabrics were aged at $130^{\circ}C$ for 30 minutes. The fabrics were washed by using Terg-O-Tometer at various conditions. Protease and/or lipase were added in the alcohol ethoxylate (AE) detergent solution. The removal efficiency was evaluated by analysis of protein and/or oil on the fabrics before and after washing, respectively. The detergency of protein and/or oil on the fabrics was discussed with enzyme concentration, washing time, washing temperature, pH of washing solution and fiber characteristics. The hydrolysis of protease improved effectively the removal of oil as well as protein by increasing removal of protein-oil mixed soil at the same time. The effect of lipase added detergent solution was slightly shown on the removal of oil and/or protein. The removal of mixed soils from cotton fabrics was very low because of large amount of residual soils caused by the physical characteristics of cotton fiber.

  • PDF

Comparison of Detergency and Fabric Deformation between Ultrasonic and Home Laundry (초음파 세탁과 가정 세탁의 세척성과 직물변형 비교)

  • Nawon Hwang;Hae-won Chung;Kwang-Woo Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.3
    • /
    • pp.386-397
    • /
    • 2023
  • In this study, the efficacy of ultrasonic washing in cotton and wool fabrics was compared and evaluated against conventional washing in terms of cleaning properties and fabric deformation. Factors such as washing temperature, time, liquid ratio, and detergent concentration were kept varied, and the cleaning properties of sebum-soiled fabrics were assessed using different detergents such as alcohol ethoxylate, linear alkylbenzenesulfonate, and IEC 60456 Reference Detergent A*. In addition, the effects and emulsification power of enzymes and oxygen bleach were examined. To compare the cleaning properties with general washing, a launder-O-meter was used. To investigate fabric deformation during the washing process, the loosening test cloth, shrinkage test cloth, and mechanical strength test cloth were compared between ultrasonic washing machines and household drum washing machines. The results indicate that ultrasonic washing exhibits superior cleaning properties than launder-O-meter when the temperature is low and the washing time is short. Furthermore, there is less deformation and damage during the washing process. It was also observed that the activity of the detergent increases when ultrasonic waves are applied to the washing process. Considering the increasing tendency to pursue convenience and simplicity in clothing management as well as the anticipated commercialization of smart clothing with built-in electric circuits, ultrasonic laundry could serve as a new alternative to existing laundry methods.

Cleaning Method for Selective Removal of Stains from Historic Textiles and Stains Change by Long Period Storage -Focused on Blood Soil- (복식유물 오구의 선택적 제거를 위한 세척방법 및 장기간 보관에 따른 오구 변화 -혈액오구를 중심으로-)

  • Roh, Eui Kyung;Ryu, Hyo-Seon;Chae, Jeongmin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.341-351
    • /
    • 2017
  • This study evaluates a cleaning method to maintain and minimize the change of blood soil for the selective removal of stains from textiles with historical significance and special meaning. Cotton and silk fabrics were soiled with blood, aged artificially and then washed by wet cleaning or dry cleaning (water, nonionic surfactant; Triton, natural surfactant; saponin, organic solvent; n-Decane). The washed fabrics were stored at room temperature for four years. The change of the blood soil was evaluated by SEM, weight, thickness, and color differences. Subsequently, the shape and the amount of blood adsorption on the fabric varied depending on fiber type and fabric structure characteristics; in addition, long term storage affected changes to blood soil. It was difficult to remove artificially aged blood soil from fabrics by wet or dry cleaning. However, the changes of the blood soil by these cleanings can be explained by the changes on SEM, weight, thickness and fabric color. The changes (especially color) showed over time. Wet cleaning showed that the changes of those factors were slightly lower than those by dry cleaning.

Washing Efficiency of Blood-Soiled Fabrics in Various Conditions of Washing - Focus on Washing Temperature, Fiber Type and Blood Aging - (혈액오구의 세척성에 관한 연구 - 세탁온도, 섬유종류 및 혈액의 노화를 중심으로 -)

  • Byeon, Hye Jin;Kim, Hye Jin;Myeong, Jeong Eun;Jo, Hee Ryeong;Yun, Changsang
    • Fashion & Textile Research Journal
    • /
    • v.22 no.4
    • /
    • pp.534-539
    • /
    • 2020
  • Experimental research is needed to provide information on the removal of bloodstains since washing clothes contaminated with blood is necessary for medical related fields (such as ambulance workers and doctors) as well as for women of childbearing age. This study investigated efficient washing conditions for the removal of bloodstains with a focus on washing temperature, fiber type and blood ageing time. Polyester/cotton fabric showed the highest detergency from among three fabrics that were influenced by the composition of the fiber and the structure of the yarn and fabric. When examining the effect of detergent, it was concluded that the alkalinity over pH 10 was essential to remove bloodstains and that auxiliary agents such as soil antiredeposition agents and bleach had a significant effect on the removal of bloodstains. Washing temperature showed the highest detergency at 20℃ due to the activity of the enzyme without the denaturalization of blood. Blood-ageing influenced detergency by inducing changes in the adsorption area and chemical bond. A combination of methods such as quick removal after contamination, use of alkaline detergents including soil antiredeposition agents and bleach, and low-temperature washing could help remove bloodstains.

A comparison of detergency and dimensional stability between wet cleaning and dry cleaning (물세탁과 드라이클리닝의 세탁성능과 형태안정성 비교)

  • Kwak, Soo-Kyung;Kim, Ah-Ri;Oh, Hwawon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.1
    • /
    • pp.181-189
    • /
    • 2019
  • The washability, redeposition, fill power, and fabric damage of wet cleaning and dry cleaning solvents were measured to identify the optimal type of washing that would increase washability while maintaining dimensional stability. The soiled fabric is a polyester cotton blend and the types of soil were wine, blood, make-up and sebum with carbon black. Petroleum and silicone solvents were used in dry cleaning. Results from this study are as follows. First, detergency is significantly influenced by the type of washing and type of soil. Wet cleaning is superior to dry cleaning. Wet cleaning shows a strong washing performance against hydrophilic soils, whereas, dry cleaning is stronger against hydrophobic soils. Second, redeposition is significantly affected by the type of washing, fabrics, and soils. Redeposition occurred little on cotton during wet cleaning, but showed a high rate for nylon. However, when the two types of fabric were dry cleaned, redeposition occurred on both types. Third, the fill power of duck-down is very affected by the type of washing. Resilience is the best in wet cleaning; and in dry cleaning, petroleum solvents showed a higher resilience when as compared to silicone solvents. Last, the level of fabric damage to cotton fabrics is highly influenced by the type of washing. Wet cleaning damages cotton fabrics significantly more than dry cleaning. For dry cleaning, petroleum solvents damage these fabrics slightly more than silicone solvents. In conclusion, the type of soil must initially be identified to determine the optimal type of washing. Special caution is required when textiles with particulate soil and nylon are washed. When considering the resilience of duck-down clothing, wet cleaning is more appropriate than dry cleaning. Dry cleaning, especially when using silicone-based solvents, is more suitable than wet cleaning for maintaining the shape of clothing.

Effect of Pretense (Subtilisin Carlsberg) on the Removal of Blood Protein Soil (II) -The Detergency of Hemoglobin from Cotton Fabics- (Protease (Subtilisin Carlsberg) 가 혈액 단백질 오구의 제거에 미치는 영향(II) -헤모글로빈 오구포의 세척성-)

  • 이정숙;김성연
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.655-666
    • /
    • 1996
  • The effect of protease (subtilisin Carlsberg) on the removal of hemoglobin as protein soil was studied. The relation between the renloval and the hydrolysis of hemoglobin by subtilisin Carlsberg was discussed. The soiled babric was prepared by spotting of hemoglobin solution evenly on the cotton fabric and was denatured by steaming. The soiled fabric was washed by using Terg-0-Tometer at various conditions. The removal efficiency was evaluated by analysis of protein on the fabrics before and after washing by means of copper-Folin method. 1. The removal of hemoglobin was increased in proportion to increasing of the enzyme concentration up to a certain point, but it began to decrease above the point. 2. The hemoglobin was removed effectively by adding of subtilisin Carlsberg, and more effectively removed by adding of AOS in the enzyme solution. 3. The removal of hemoglobin deviated from the first order reaction in detergency. 4. The renloval of hemoglobin was highest at $50^{\circ}C$ in detergency, Even at low temperature the removal efficiency of enzyme was relatively higher compared with the hydrolysis of hemoglobin by the enzyme. However the removal of hemoglobin was apparently decreased with the increase of temperature over $60^{\circ}C$. 5. The removal of hemoglobin was relatively high at pH 7.0~8.0 and increased continuously with the increase of pH in detergency 6. In detergency, the removal mechanism of hemoglobin by subtilisin Carlsberg could be explained as follows: Fisrt of all, the enzyme hydrolyzed hemoglobin substrates partially by forming E-S complex at the surface of hemoglobin on the cotton fiber, and decomposed cooperative binding of hemoglobin. Subsequently, the fragments of hemoglobin were easily removed by washing. According as the enzyme penetrated to inner part of hemoglobin gradually, the hemoglobin on the cotton fiber was effectively removed by the repetition of these process. The removal of hemoglobin was more effectively increased by adding both the enzyme and AOS in the washing solution. Therefore, it was regarded that AOS molecules were adsorbed at the hydrophobic surface of denatured hemoglobin, subsequently, decomposed more effectively cooperative binding of hemoglobin, and the fragments of hemoglobin were removed more efficiently by means of the interfacial reaction of AOS.

  • PDF

Sustainability of Textile Products based on Washing Conditions: Focusing on the washing temperature and washing time (의류제품의 세탁조건과 지속가능성: 세탁온도와 세탁시간을 중심으로)

  • Yun, Changsang;Ryu, Hanna;Park, Sohyun
    • Human Ecology Research
    • /
    • v.56 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • The use stage of a textile product impacts sustainability more significantly than other stages of the product's life cycle due to repeated washing and drying. This study determines efficient washing conditions, with high detergency, to reduce energy consumption from excessive washing and improve the washing process sustainability. Detergency was measured at various washing temperatures ($20^{\circ}C$, $40^{\circ}C$, and $60^{\circ}C$) and time (10 min, 20 min, and 30 min) using standardized soiled fabrics, i.e., 100% cotton, polyester/cotton (65%/35%), and 100% polyester woven fabric soiled with pigment/sebum, carbon black/mineral oil, soot/mineral oil, cocoa, blood, and red wine. Detergency at the washing condition of $20^{\circ}C$ and 30 min was higher than that at $40^{\circ}C$ and 10 min. In addition, detergency at the condition of $40^{\circ}C$ and 30 min was also higher than that at $60^{\circ}C$ and 10 minutes. This may be because a reduced washing effect at low washing temperatures was complemented by increased mechanical action over a long time. Further, washing temperature and time, with the same detergency, differed based on the type of fiber and soil. Also, the influence of a detergent on the detergency depends on the type of soil. The results suggest that energy and detergent have been consumed more than necessary in actual laundry. According to each type of fiber and soil, washing conditions designed to reduce the energy consumption of the washing process while maintaining the same detergency, were determined.

A Study on the Pet Soil Removal Effect of Washing Conditions Using a Chemiluminescence Reaction (화학발광 반응을 이용한 세탁조건별 반려동물 오구 제거효과 연구)

  • Park, Jung-Eun;Lee, Jungsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.5
    • /
    • pp.840-851
    • /
    • 2021
  • In this study, we used a chemiluminescence reaction to investigate the removal effect of pet soil, such as dog blood, urine and feces. The soiled fabrics were washed with a standard laundry course of 30℃ and a washing time of 30 min and a pet care laundry course of 40-60℃ and a washing time of 100 min. The detergency was evaluated by the surface reflectance and chemiluminescence reaction (bloodstain detection by luminol test and urine-stain and feces-stain detection by UV blacklight test) before and after washing. The surface reflectance results did not show any difference in detergency for both courses, whereas the chemiluminescence reaction did. The detergency of the pet care course compared to the standard course was 101% according to the surface reflectance and 120% according to the chemiluminescence reaction. Therefore, residual stains not detected by surface reflectance can be evaluated through chemiluminescence reaction, and it was confirmed that pet stains can be managed more hygienically by washing for a long time at a high temperature.

Detergency improvement of hydrophilic soils in dry cleaning process (드라이클리닝 시 친수성 오구의 세탁성 향상을 위한 연구)

  • Kwak, Soo-Kyoung;Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.213-220
    • /
    • 2019
  • The dry cleaning effect related to the type of soil and fiber was analyzed using silicone and alcohol-based solvents(ethyl alcohol, isopropyl alcohol, acetone) that are relatively safe for the human body and environment to improve the detergency of hydrophilic soils in dry cleaning system. Based on this analysis, an effective dry cleaning method to be carried out for improving the detergency according to the type of hydrophilic soils. After dry cleaning was performed using 20 types of artificial soiled fabrics consisting of 7 types of fibers and 4 types of hydrophilic soils, the detergency was measured and the results were compared and analyzed by solvents and fiber types. The results are presented as follows; first, the detergency of hydrophilic soils using silicone solvents showed a low rate of detergency. In particular, the tannin soil showed a lower level of detergency compared to the protein soil. Second, the detergency of hydrophilic soils using silicon solvents with dry soap differed in some detergency according to the soil and fiber types. Especially, the detergency of curry soil on cotton fabric showed significant improvement. Third, the protein soil was not removed from dry cleaning using alcohol-based solvents, but the effect of dry cleaning of curry soil on both cotton and polyester fabric was substantially improved. As a result, the elimination of blood soil is more effective in silicon solvents than in alcohol-based solvents. The removal of tannin soils may improve detergency by adding dry soap to silicon solvents or by using alcohol-based solvents as alternative solvents. The use of alternative solvents such as silicon and alcohol solvents can contribute to the environmental improvement of the dry cleaning industry, which uses petroleum-based solvents. It is also expected to provide consumers with the opportunity to choose eco-friendly and efficient dry cleaning methods.