• Title/Summary/Keyword: blood oxygenation

Search Result 102, Processing Time 0.02 seconds

A Study on Diffusion Constant Measurement Using Light Reflectance within Biological Tissue (생체조직내에서 반사광을 이용한 확산 상수의 측정에 관한 연구)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 1996
  • This paper is the study of the diffusion constant in order to calculate the percent oxygenation and percent blood volume using reflectance light within biological tissue. The diffusion constant play major role in percent oxygenation and percent blood volume and varies with the biological material such as hemolyzed blood, whole blood, dermis and epidermis in vivo tissue. The diffusion constant can be modeled to consist of a contribution from bloodless tissue and blood present in tissue. The reflectance light for experimental are red light of 660nm, infrared light of 880nm, green light of 569nm. The correlation between the diffusion constant and biological tissue was analyzed by the intensity of reflectance light at different depth within human limb. The reflectance light was changed in response to physiological changes within biological tissue. The data for diffusion constant were obtained at different depth beneath the surface of the skin and will be utilized to amen the percent oxygenation and percent blood volume.

  • PDF

Improvement of Two-Stage Centrifugal Blood Pump for Cardiopulmonary Support System and Evaluation of Anti-Hemolysis Performance

  • Horiguchi, Hironori;Tsukiya, Tomonori;Takemika, Toratarou;Nomoto, Takeshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In cardiopulmonary support systems with a membrane oxygenation such as a percutaneous cardiopulmonary support (PCPS) or an extracorporeal membrane oxygenation (ECMO), blood pumps need to generate the pressure rise of approximately 200mmHg or higher, due to the high hydraulic resistances of the membrane oxygenation and of the cannula tubing. In order to realize the blood pump with higher pressure rise, higher anti-hemolysis and thrombosis performances, the development of novel centrifugal blood pump composed of two-stage has been conducted by the authors. In the present paper, effective attempts to decrease the wall shear stress and to suppress the stagnation are introduced for the prevention of hemolysis and thrombosis in blood pumps. The hemolysis test was also carried out and it was clarified that the decrease of wall shear stress is effective as a guideline of design of blood pumps for improving the anti-hemolysis performance.

Application of Extracorporeal Membranous Oxygenation in Trauma Patient with Possible Transfusion Related Acute Lung Injury (TRALI) (수혈 관련 급성 폐손상이 동반된 외상환자에서 체외막 산화기의 적용 경험)

  • Lee, Dae-Sang;Park, Chi-Min
    • Journal of Trauma and Injury
    • /
    • v.28 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • The case of a patient with a transfusion-related acute lung injury (TRALI) to whom extracorporeal membrane oxygenation (ECMO) had been applied is reported. A 55-year-old male injured with liver laceration (grade 3) without chest injury after car accident. He received lots of blood transfusion and underwent damage control abdominal surgery. In the immediate postoperative period, he suffered from severe hypoxia and respiratory acidosis despite of vigorous management such as 100% oxygen with mechanical ventilation, high PEEP and muscle relaxant. Finally, ECMO was applied to the patients as a last resort. Aggressive treatment with ECMO improved the oxygenation and reduced the acidosis. Unfortunately, the patient died of liver failure and infection. TRALI is a part of acute respiratory distress syndrome (ARDS). The use of ECMO for TRALI induced severe hypoxemia might be a useful option for providing time to allow the injured lung to recover.

  • PDF

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF

Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction

  • Hwang, Hyejung;Mizuno, Sahiro;Kasai, Nobukazu;Kojima, Chihiro;Sumi, Daichi;Hayashi, Nanako;Goto, Kazushige
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • [Purpose] The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (${\dot{V}}O_2$ max) or 40% ${\dot{V}}O_2$ max) on muscle oxygenation, energy metabolism, and endocrine responses. [Methods] Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% ${\dot{V}}O_2$ max without BFR (NBFR40), (2) endurance exercise at 25% ${\dot{V}}O_2$ max with BFR (BFR25), and (3) endurance exercise at 40% ${\dot{V}}O_2$ max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. [Results] Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. [Conclusion] Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.

Computer Models on Oxygenation Process in the Pulmonary Circulation by Gas Diffusion

  • Chang, Keun-Shik;Bae, Hwang
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this article we introduce computer models that have been developed in the past to determine the concentration of metabolic gases, the oxygen and carbon dioxide, along the pulmonary circulation. The terminal concentration of these gases in the arterial blood is related with the total change of the partial pressure of the same gases in the alveoli for the time beginning with inspiration and ending with expiration. It is affected not only by the ventilation-perfusion ratio and the gas diffusion capacity of the lung membrane but also by the pulmonary defect such as shunt, dead space, diffusion impairment and ventilation-perfusion mismatch. Some pathological pulmonary symptoms such as ARDS and CDPD can be understood through the mathematical models of these pulmonary dysfunctions. Quantitative study on the blood oxygenation process using various computer models is therefore of foremost importance in order to monitor not only the pulmonary health but also the cardiac output and cell metabolism. Reviewed in this paper include the basic and advanced methods that enable numerical study on the gas exchange and on the arterial oxygenation process, which might depend on the various heart and lung physiological conditions listed above.

  • PDF

Enhancement of Gas Transfer Efficiency in an Intravascular Lung Assist Device using Blood Substitutes (혈관내의 폐보조장치에서 혈액대용물질을 사용한 기체전달 효율향상)

  • 김기범;박재관;권대규;정경락;이삼철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.391-399
    • /
    • 2003
  • Intravascular oxygenation represents an attractive. alternative support modality for therapy originated with acute respiratory distress syndrome(ARDS). However. the clinical study concluded that more gas exchange was needed for intravascular oxygenation to be clinically effective in ARDS treatment. In this study, we tried to enhance gas exchange on the VIVLAD using microencapsulation of hemoglobin and perfluorocarbon emulsion(PFC emulsion). Blood gas measurements were performed by collecting blood samples from the arterial and venous sides of the circuit, and processing them in a blood/gas analyzer. The function of hemosome. blood/hemosome mixed solution. and blood/PFC emulsion mixed solution were tested by an oxygen dissociation curve using a blood/gas analyzer. As a result, it was shown that the oxygen transfer of hemosome and blood/hemosome mixed solution were higher than that of whole blood. Also. it showed that the carbon dioxide transfer of whole blood/PFC emulsion mixed solution was higher than that of others. Therefore, we determined that hemosome and PFC emulsion could increase oxygen transfer and carbon dioxide transfer. respectively.

The Value of Mixed Venous Oxygen Saturation during and after Cardiopulmonary Bypass (체외순환중의 중심 정맥 산소포화도의 의의)

  • 이재원
    • Journal of Chest Surgery
    • /
    • v.28 no.1
    • /
    • pp.7-10
    • /
    • 1995
  • Mixed Venous oxygenation saturation[SvO2 is a variable determined in part by the externally controlled factors and in part by the patient during CPB. I monitored the SvO2 and tested it as a parameter for the regulation of pump output and as a criteria for the need of inotropics after CPB. With the help of SvO2, I increased the pump flow especially during rewarming for more optimal oxygenation of cells. After CPB, the calculated cardiac index was used as an indicator for the need of inotropic support with greater accuracy and without any clinical problems. I conclude that the SvO2 is an easily checkable variable and a good indicator for optimal oxygenation at cell level, and can be used as an objective criteria for the need of postoperative inotropic support.

  • PDF

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.

Outcomes after Extracorporeal Membrane Oxygenation in Neonates with Congenital Diaphragmatic Hernia: A Single-Center Experience

  • Choi, Wooseok;Cho, Won Chul;Choi, Eun Seok;Yun, Tae-Jin;Park, Chun Soo
    • Journal of Chest Surgery
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2021
  • Background: Congenital diaphragmatic hernia (CDH) is a rare disease often requiring mechanical ventilation after birth. In severe cases, extracorporeal membrane oxygenation (ECMO) may be needed. This study analyzed the outcomes of patients with CDH treated with ECMO and investigated factors related to in-hospital mortality. Methods: Among 254 newborns diagnosed with CDH between 2008 and 2020, 51 patients needed ECMO support. At Asan Medical Center, a multidisciplinary team approach has been applied for managing newborns with CDH since 2018. Outcomes were compared between hospital survivors and nonsurvivors. Results: ECMO was established at a median of 17 hours after birth. The mean birth weight was 3.1±0.5 kg. Twenty-three patients (23/51, 45.1%) were weaned from ECMO, and 16 patients (16/51, 31.4%) survived to discharge. The ECMO mode was veno-venous in 24 patients (47.1%) and veno-arterial in 27 patients (52.9%). Most cannulations (50/51, 98%) were accomplished through a transverse cervical incision. No significant between-group differences in baseline characteristics and prenatal indices were observed. The oxygenation index (1 hour before: 90.0 vs. 51.0, p=0.005) and blood lactate level (peak: 7.9 vs. 5.2 mmol/L, p=0.023) before ECMO were higher in nonsurvivors. Major bleeding during ECMO more frequently occurred in nonsurvivors (57.1% vs. 12.5%, p=0.007). In the multivariate analysis, the oxygenation index measured at 1 hour before ECMO initiation was identified as a significant risk factor for in-hospital mortality (odds ratio, 1.02; 95% confidence interval, 1.01-1.04; p=0.05). Conclusion: The survival of neonates after ECMO for CDH is suboptimal. Timely application of ECMO is crucial for better survival outcomes.