• Title/Summary/Keyword: blood histamine

Search Result 114, Processing Time 0.031 seconds

Bioequivalence of Tagamet Tablet to Sinil CIMETIDINE Tablet (cimetidine 400 mg) (타가메트정 400 mg에 대한 신일시메티딘정 400 mg의 생물학적동등성시험)

  • Yoon, Mi-Kyeong;Lee, Byoung-Moo;Lee, Sung-Jae;Kim, Sun-Kyu;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.521-527
    • /
    • 2004
  • Cimetidine is a histamine $H_2-receptor$ antagonist, used for the treatment of endoscopically or radiographically comfirmed duodenal ulcer, pathologic GI hypersecretory conditions, and active, benign and gastric ulcer. Simple method for determining cimetidine in human plasma has been developed and validated. The analytical procedure for cimetidine showed a linear relationship in the concentration ranges from $0.05\;to\;5\;{\mu}g/ml$. Coefficient of variance (CV, %) for intraday and interday validation and relative error (RE, %) were less than ${\pm}15%$. Based on this analytical method, the bioequivalence of two cimetidine 400 mg tablets, reference (Tagamet 400 mg) and test drug (Sinil CIMETIDINE 400 mg) was evaluated according to the guidelines set by the Korea Food and Drug Administration (KFDA). Release of cimetidine from the tablets in vitro was tested using KP VIII Apparatus II with various dissolution media (pH 1.2, 4.0, 6.8 buffer solutions and water). Twenty-four healthy volunteers, $21.38{\pm}1.86$ years in age and $68.71{\pm}8.68\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was performed. After oral administration of a tablet containing 400 mg of cimetidine, blood samples were taken at predetermined time intervals and concentrations of cimetidine in plasma were determined using HPLC equipped with UV detector. The dissolution profiles of the two tablet formulations were very similar at all dissolution media. In addition, pharmacokinetic parameters such as $AUC_t$ and $C_{max}$ were calculated and ANOVA was employed for the statistical analysis of parameters. The results were revealed that the differences in $AUC_t$ and $C_{max}$ between the two tablets were 4.17 % and 0.97% respectively. At 90% confidence intervals, the differences in these parameters were also within ${\pm}20%$. All of the above mentioned parameters have met the criteria of KFDA guidelines for bioequivalence, indicating that the test drug tablet (Sinil CIMETIDINE tablet) is bioequivalent to Tagamet 400 mg tablet.

General Pharmacology of G009, a Polysaccharide Isolated from Ganoderma lucidum IY 009 (영지의 단백다당체 G009의 일반약리작용)

  • Lee, Eun-Bang;Cheon, Seon-Ah;Kim, Sang-Mee;Kim, Kyung-Ran;Kim, Su-Ung;Lee, Seung-Yong;Lee, seung-Mok;Jeong, Hoon;Hyun, Ik-Sang;Lee, June-Woo;Han, Man-Deuk
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.369-375
    • /
    • 1994
  • A polysaccharide, G009, isolated from Ganoderma lucidum IY 009, was subjected to investigating on general pharmacology. This material at the large oral doses of 1000 and 2000 mg/kg in mice did not exhibit any abnormal behaviors and another effects on central nervous system. It also had no influences on hexobarbital-induced sleeping time, rotarod test and spontaneous activity test at each oral dose of 1000 mg/kg in mice. No effects on the body temperature and on acetic acid induced writhing syndrome in mice were observed with its oral administration at 1000 mg/kg, and the convulsions induced by strychnine and pentetrazole were not inhibited at its oral doses of 1000 mg/kg in mice. The solution of G009 as given intravenously at the doses of 30 and 60 mg/kg in rabbit had no influences on blood pressure and respiration rates and depth. In isolated organs of rat uterus and fundus muscles and guineapig ileum and trachea, it did not show any contraction or relaxation at the concentrations of 2$\times$10$^{-3}$ g/ml, and the contractive actions produced by oxytocin, acetylcholine, serotonin and histamine were not inhibited at the same doses. This material showed no effect on intestinal propulsion test in mice and gastric secretion in rats at the oral doses of 1000 mg/kg. However, it is interesting that the material exhibited potent inhibition of acidified aspirin induced gastric damage at the doses of 500 and 1000 mg/kg in rats.

  • PDF

Bioequivalence Test of Fexofenadine Hydrochloride 120 mg Tablets (염산펙소페나딘 120밀리그람 정제의 생물학적동등성시험)

  • Cho, Hea-Young;Kang, Hyun-Ah;Kim, Se-Mi;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • Fexofenadine, ($\pm$)-4-1-hydroxy-4-{4-(hydroxydiphenylmethyl)-1-piperidinyl}-butyl-a,a-dimethyl benzeneacetic acid, is a selective histamine $H_1$ receptor antagonist, and is clinically effective in the treatment of seasonal allergic rhinitis and chronic idiopathic urticaria as a first-line therapeutic agent. The purpose of the present study was to evaluate the bioequivalence of two fexofenadine hydrochloride tablets, $Allegra^{(R)}$ (Handok Pharmaceuticals Co., Ltd.) and Alecort (Samchundang Pharmaceutical Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of fexofenadine from the two fexofenadine hydrochloride formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media. Twenty six healthy male subjects, 25.62$\pm$3.35 years in age and 70.05$\pm$11.71 kg in body weight, were divided into two groups and a randomized 2$\times$2 cross-over study was employed. After a single tablet containing 120 mg as fexofenadine hydrochloride was orally administered, blood samples were taken at predetermined time intervals and the concentrations of fexofenadine in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar in all tested dissolution media. The harmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated, and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Allegra^{(R)}$, were -1.37, 5.22 and 16.50% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.83$\sim$log 1.08 and log 0.81$\sim$log 1.03 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Alecort tablet was bioequivalent to $Allegra^{(R)}$ tablet.

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF