• 제목/요약/키워드: blogs

검색결과 318건 처리시간 0.023초

사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로 (Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site)

  • 변성호;이동훈;김남규
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.23-43
    • /
    • 2016
  • 최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.

뉴스기사를 이용한 소비자의 경기심리지수 생성 (Construction of Consumer Confidence index based on Sentiment analysis using News articles)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.1-27
    • /
    • 2017
  • 경제주체들의 경기상황에 대한 판단 및 전망은 경기변동에 영향을 미치므로 경기심리지수와 거시경제지표들 간에는 밀접한 관련성을 나타내는 것으로 알려져 있다. 경기선행지표로 국내에서 많이 사용되는 경기심리지수에는 소비자동향조사, 기업경기조사, 경제심리지수가 있다. 그러나 설문조사를 통해 생성된 지수는 자료의 성격상 속보성이 떨어지는 문제가 있다. 본 연구에서는 이러한 정형데이터의 한계를 보완할 수 있도록 비정형데이터에서 정보를 추출해 경기심리지수를 생성하고, 경제분석에서의 활용 가능성을 검토하였다. 민간소비와 관련된 실물지표에는 소매판매업지수와 서비스업생산지수를 사용하였고, 고용지표에는 고용률과 실업률을, 가격지표에는 소비자물가상승률과 가계의 대출금리를 사용하여 지표들 간의 추이 분석 및 시차구조 파악을 위한 교차상관분석을 수행하였다. 마지막으로 이들 지표들에 대한 예측 가능성을 점검하였다. 분석결과, 다른 지표들의 선행지수로 많이 사용되는 소비자심리지수와 비교해 선택 지표들과 높은 상관관계를 보이며, 1~2개월 선행한 것으로 나타났다. 예측력 또한 향상되어 텍스트데이터에서 생성한 소비자 경기심리지수의 유용성이 확인되었다. 온라인에서 생성되는 뉴스기사나 소셜 SNS 등의 텍스트 데이터는 속보성이 뛰어나고, 커버리지가 넓어 특정 경제적 이슈가 발생할 경우 이것이 경제에 미치는 영향을 빠르게 파악할 수 있다는 점에서 경기판단지표로써의 잠재적 가능성이 클 것으로 보인다. 경제분석에서 비정형데이터를 활용한 국내연구는 초기 단계지만 데이터의 유용성이 확인되면 그 활용도가 크게 높아질 것으로 기대한다.

오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례 (Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case)

  • 진위;김정수;김종우
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.49-65
    • /
    • 2014
  • 구전(WOM: Word of Mouth)는 주변 사람들에게 상품에 대한 경험을 입에서 입으로 전달하는 현상을 말하며 소셜 미디어의 발전으로 온라인 구전(eWOM: Electronic Word of Mouth) 형태로 발전하였다. 구전 효과의 중요성으로 인해서 대부분의 기업들의 자사의 상품이나 서비스에 대한 온라인 구전에 촉각을 세우고 있으며, 특히 영화와 같은 경험재의 경우에는 그 영향력이 더욱 크다. 본 연구에서는 영화 커뮤니티에 대한 사회 네트워크 분석을 통해서 영화 흥행성과 지표인 매출에 미치는 영향요인을 규명하고자 한다. 영화 흥행성과 연구들에서 주요하게 다루어진 영화에 대한 구전의 크기(volume)와 방향성(valence)과 같은 구전 요인들을 추가하여, 구전 네트워크의 중심성 척도를 영향 요인에 고려하였다. 구전의 크기, 방향성, 그리고 3가지 중심성 척도(연결 중심성, 매개 중심성, 근접 중심성)의 최종 영화 매출에 영향 관계를 가설로 설정하였다. 제시한 연구 모형을 검증하기 위하여 대표적인 온라인 영화 커뮤니티 사이트인 IMDb(Internet Movie Database)에서 영화 구전 데이터를 수집하였고, Box-Office-Mojo사이트에서 영화 매출 데이터를 수집하였다. 2012년 9월부터 1년 동안, 주간 Top-10에 포함된 적이 있는 영화들을 대상으로 하였으며, 총 103개의 영화가 선정되어 이 영화들에 대한 메타 데이터와 커뮤니티 데이터가 수집되었다. 영화 커뮤니티 네트워크는 평가자들간의 댓글 관계를 기초로 구축하였다. 본 연구에서 사용한 3가지 중심성 척도는 사회 네트워크 분석 도구인 NodeXL을 사용하여 계산되었으며, 각 영화별 커뮤니티 참여자들의 중심성 척도의 평균값을 활용하였다. 가설 검증의 사전 분석을 위한 상관관계 분석에서는 3가지 중심성 척도간에 상관 관계가 높은 것으로 파악되어서, 각각에 대하여 별도로 회귀분석을 수행하였다. 분석 결과, 기존 연구와 일관성 있게 구전의 크기와 방향성은 영화 성과지표인 최종 매출에 긍정적인 영향을 미치는 것으로 파악되었다. 또한 구전 네트워크 내의 참여자 매개중심성 평균은 영화의 최종 매출에 영향을 미치는 것으로 파악되었다. 하지만 연결중심성과 근접중심성은 최종 매출에 영향을 주지 못하는 것으로 나타났다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로 (Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page)

  • 전수현;곽기영
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.57-79
    • /
    • 2016
  • 최근 소셜 네트워크 서비스는 소비자와의 관계 마케팅 확산 및 확장을 위한 중요한 채널로 인식되며 많은 관심을 받고 있다. 기업이 온라인 환경에서 성공하기 위해서는 기업과 고객 사이의 관계 구축뿐만 아니라 고객들 간의 관계에 초점을 맞출 필요가 있다. 본 연구에서는 페이스북 팬 페이지에 참여하는 사용자들 사이의 네트워크를 분석하여 기업의 비즈니스 성과에 고객 간 네트워크의 구조적 특성이 미치는 영향을 실증적으로 분석하였다. 이를 위해 네트워크 데이터는 코스피 상장 기업 가운데 페이스북 팬 페이지에 100개 이상의 게시글을 올린 54개 기업으로부터 수집하였으며, 수집된 네트워크 데이터는 각 사용자를 노드로 하고 동일한 마케팅 활동에 대해 참여한 사용자간의 관계를 링크로 한 원모드 비방향 이진 네트워크(one-mode undirected binary network)이다. 본 연구에서는 이러한 네트워크 데이터를 핸들링하여 사용자들 간의 활동 관계를 분석할 수 있는 네트워크 지표(밀도, 글로벌 클러스터링 계수, 최단거리평균, 직경)를 도출하였으며, 이러한 고객 간 네트워크의 구조적 특징을 파악할 수 있는 지표와 기업의 과거실적(순이익), 그리고 미래 예측성과(토빈의 Q) 간의 관계를 분석하였다. 본 연구는 학문적 관점에서 소셜 미디어 채널을 비즈니스 관점에서 연구하려는 연구자들에게 소셜네트워크분석 방법을 통한 새로운 접근법을 제시한다. 실무적인 관점에서 본 연구는 소셜미디어를 통해 마케팅 활동을 수행하려는 기업의 관리자들에게 네트워크의 지표를 이용한 지능형 마케팅 서비스를 수행할 수 있는 토대를 제공할 것으로 기대한다.

K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로 (Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai)

  • 류미나;임규건
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.197-218
    • /
    • 2019
  • 중국 화장품 전체 교역중 약 67% 정도가 전자상거래로 이루어지고 있는데 특히 한국 화장품인 K-Beauty 제품의 인기가 높다. 기존 연구에 의하면 화장품 같은 소비재의 경우 소비자의 80%는 제품 구매 전 제품정보를 인터넷으로 검색하며 구전정보에 영향을 받는다. 대부분의 중국 소비자들은 화장품과 관련된 정보를 주요 SNS에 다른 소비자들이 올린 댓글을 통해 획득하며 최근에는 뷰티 관련 동영상 채널 정보를 이용하기도 한다. 기존의 온라인 구전 관련 연구는 대부분 Facebook, Twitter, 블로그 등의 매체 자체가 중심이었다. 본 연구에서는 온라인 구전정보의 전달 형태와 정보의 형태를 고려하여 정보유형을 동영상과 사진 및 텍스트로 나누어 연구하고자 한다. 중국의 SNS대표 플랫폼인 SINA Weibo와 동영상 플랫폼 Meipai의 비정형 데이터를 분석하고 온라인 구전정보를 양과 방향성으로 나누어 K-Beauty브랜드 매출액에 미치는 영향을 분석하고자 한다. Meipai에서는 총 약 33만개의 데이터를 수집하였고 SINA Weibo에서는 총 약 11만개의 데이터를 수집하여 화장품의 기본 속성도 고려하여 분석하였다. 본 연구의 의의는 온라인 매출은 K-Beauty화장품에 대해서도 구전에 영향을 받는다는 것을 기본적으로 입증함과 동시에 특히 정보 유형에 대한 구분을 시도 했다는 것이다. 두가지 매체 모두 기존 연구와 같이 양이 매출에 영향을 미치고 있으나 매체풍부성으로 인해 텍스트보다 동영상이 정보를 더 주고 영향이 크다는 것을 입증하였다. 또한, 정보 방향성 측면에서는 색조화장품의 경우 부정 댓글의 영향이 크게 나타났다. 실무적으로는 화장품 판매 전략 및 광고 전략에 기초 및 색조 화장품을 구분하여 중국 K-Beauty화장품 매출증대를 위한 마케팅전략을 구사하는데 도움이 될 것으로 기대된다.

각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발 (Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions)

  • 하상집;이준식;유인진;박도형
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.55-78
    • /
    • 2021
  • 최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.