• 제목/요약/키워드: blog retrieval

검색결과 16건 처리시간 0.02초

WEB-BASED CONSTRUCTION KNOWLEDGE MANAGEMENT PORTAL

  • Youjin Jang;Moonseo Park;Hyun-Soo Lee
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.487-492
    • /
    • 2011
  • As a knowledge-based economy is emerging, knowledge management (KM) is being rapidly disseminated in both academic circles and the business world. Accordingly, how to effectively manage knowledge is vital to the survival and advance of a company, particularly in project-based industries such as construction. For these reasons, construction companies have adopted IT-based Knowledge management systems (KMS), which is the technology platform and infrastructure that an organization employs to support knowledge management. However, many construction companies have spent resources on developing a KMS that only focus on codification. Furthermore, small and medium-sized companies have limited resources to afford extensive investments. This research addresses the problems found in the current KMS and develops a web-based construction knowledge management portal (CKMP). To achieve these objectives, a case study is conducted and requirements for implementing KM are identified. Based on the identified requirements, this paper builds CKMP using Expert Index (EI), blog, ontology based knowledge retrieval, and wikiblog. The most important functionality of CKMP is their fundamentals to synchronize and support KM process. In order to validate the CKMP, a pilot test with actual users is conducted, and the usability of the system is compared with the current systems. This study is relevant to both the construction industry and academia, as it provides a means of enhancing the performance of KM.

  • PDF

의견 문서의 단어 통계 분석을 통한 의견 검색 특성에 관한 연구 (A Study on the Characteristics of Opinion Retrieval Using Term Statistical Analysis in Opinion Documents)

  • 한경수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권11호
    • /
    • pp.21-29
    • /
    • 2010
  • 문서에 표출된 사용자의 의견을 검색하는 의견 검색의 성능이 일반 사실을 검색하는 기존 주제 검색의 성능을 크게 향상시키지 못하고 있다. 이에 본 연구는 블로그를 대상으로 의견 문서와 비의견 문서의 단어 통계를 비교 분석함으로써 의견 검색에 활용할 수 있는 통계적 특성을 파악하고자 한다. TREC의 블로그 트랙에서 사용했던 Blogs06 컬렉션과 150개의 TREC 토픽을 실험 데이터로 사용하였다. JS divergence를 이용하여 의견 문서에서의 단어 확률 분포 간의 상이성을 비교 분석하였으며, TREC 토픽의 유형 및 주제 영역별로 의견 문서를 구분하여 확률 분포의 차이점을 살펴보았고, 의견 단어별 확률을 비교 분석하였다. 실험을 통해 토픽별 특성을 고려한 의견 탐지 방법의 필요성, 토픽별 긍/부정 의견 단어 추출의 효과성, 유형과 주제 영역의 상호 보완적인 특징, 긍정 의견 단어 사용의 유의점 등을 알아내었다.

사용자 컨텍스트와 태그를 이용한 소셜 검색 시스템의 설계 및 구현 (Design and Implementation of Social Search System using user Context and Tag)

  • 윤태현;권준희
    • 디지털산업정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 2012
  • Recently, Social Network services(SNS) is gaining popularity as Facebook and Twitter. Popularity of SNS leads to active service and social data is to be increased. Thus, social search is remarkable that provide more meaningful information to users. but previous studies using social network structure, network distance is calculated using only familiarity. It is familiar as distance on network, has been demonstrated through several experiments. If taking advantage of social context data that users are using SNS to produce, then familiarity will be helpful to evaluate further. In this paper, reflect user's attention through comments and tags, Facebook context is determined using familiarity between friends in SNS. Facebook context is advantageous finding a friend who has a similar propensity users in context of profiles and interests. As a result, we provide a blog post that interest with a close friend. We also assist in the retrieval facilities using Near Field Communication(NFC) technology. By the experiment, we show the proposed soicial search method is more effective than only tag.

오피니언 마이닝을 활용한 블로그의 극성 분류 기법 (The Blog Polarity Classification Technique using Opinion Mining)

  • 이종혁;김원상;박제원;최재현
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권4호
    • /
    • pp.559-568
    • /
    • 2014
  • 기존의 감정분석을 통한 극성 분류는 주로 평점을 기반으로 하는 상품평을 기준으로 문장규칙을 이용하여 분석해왔다. 이러한 분석방법은 평점이 없는 블로그 같은 경우 적용되기 어려움 점이 있고 댓글 아르바이트나 관리자에 의해 상품평이 조작될 가능성이 있어서 상품평 만으로는 상품, 매장에 대한 의견을 파악하기에는 어려움이 있다. 이러한 문제점을 고려할 때 개인들의 솔직한 의견이 담겨 있는 블로그를 분석하여 극성을 분류하면 상품, 매장에 대한 올바른 이해가 가능하다. 본 논문은 도메인별로 블로그 글에 대한 고빈도 단어를 추출하여 주제어를 선정하고, 선정된 주제어를 기준으로 제안하는 감정분석 기법을 적용하여 블로그 글에 대한 극성을 분류한다. 감정분석 기법의 성능을 평가하기 위하여 정보 검색 분야에서 사용되는 측정지표 Precision, Recall, F-score를 사용하여 본 연구의 극성 분류기법의 유용성을 검증한다. 평가 결과 기존의 상품평을 문장규칙을 이용하여 분석하여 극성 분류를 하는 기법들에 비해서 제안한 감정분석 기법을 적용할 경우에 우수한 성능으로 극성 분류를 하는 것으로 나타났다.

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.

트윗 데이터를 활용한 IT 트렌드 분석 (An Analysis of IT Trends Using Tweet Data)

  • 이진백;이충권;차경진
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.143-159
    • /
    • 2015
  • 불확실한 환경변화에 대처하고 장기적 전략수립을 위해 기업에게 있어서 IT 트렌드에 대한 예측은 오랫동안 중요한 주제였다. IT 트렌드에 대한 예측을 기반으로 새로운 시대에 대한 인식을 하고 예산을 배정하여 빠르게 변화하는 기술의 추세에 대비할 수 있기 때문이다. 해마다 유수의 컨설팅업체들과 조사기관에서 차년도 IT 트렌드에 대해서 발표되고는 있지만, 이러한 예측이 실제로 차년도 비즈니스 현실세계에서 나타났는지에 대한 연구는 거의 없었다. 본 연구는 현존하는 빅데이터 기술을 활용하여 서울지역을 중심으로 지난 8개월동안(2013년 5월1일부터 2013년12월31까지) 정보통신산업진흥원과 한국정보화진흥원에서 2012년 말에 발표한 IT 트렌드 토픽이 언급된 21,589개의 트윗 데이터를 수집하여 분석하였다. 또한 2013년에 나라장터에 올라온 프로젝트들이 IT트렌드 토픽과 관련이 있는지 상관관계분석을 실시하였다. 연구결과, 빅데이터, 클라우드, HTML5, 스마트홈, 테블릿PC, UI/UX와 같은 IT토픽은 시간이 지날수록 매우 빈번하게 언급되어졌으며, 이 같은 토픽들은 2013년 나라장터 공고 프로젝트 데이터와도 매우 유의한 상관관계를 가지고 있는 것을 확인할 수 있었다. 이는 전년도(2012년)에 예측한 트렌드들이 차년도(2013년)에 실제로 트위터와 한국정부의 공공조달사업에 반영되어 나타나고 있는 것을 의미한다. 본 연구는 최신 빅데이터툴을 사용하여, 유수기관의 IT트렌드 예측이 실제로 트위터와 같은 소셜미디에서 생성되는 트윗데이터에서 얼마나 언급되어 나타나는지 추적했다는 점에서 중요한 의의가 있고, 이를 통해 트위터가 사회적 트랜드의 변화를 효율적으로 추적하기에 유용한 도구임을 확인하고자 할 수 있었다.