• Title/Summary/Keyword: block-structured grid

Search Result 23, Processing Time 0.043 seconds

Automatic Multi-Block Grid Generation Technique Based on Delaunay Triangulation (Delaunay 삼각화 기법을 활용한 다중-블록 정렬 격자의 자동 생성 기법)

  • Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.108-114
    • /
    • 1999
  • In this paper. a new automatic multi=block grid generation technique for general 2D regions is introduced. According to this simple and robust method, the domain of interest is first triangulated by using Delaunay triangulation of boundary points, and then geometric information of those triangles is used to obtain block topology. Once block boundaries are obtained. structured grid for each block is generated such that grid lines have $C^0-continuity$ across inter-block boundaries. In the final step of the present method, an elliptic grid generation method is applied to smoothen grid distribution for each block and also to re-locale the inter-block boundaries, and eventually to achieve a globally smooth multi-block structured grid system with $C^1-continuity$.

  • PDF

DEVELOPMENT OF A THREE-DIMENSIONAL MULTI-BLOCK STRUCTURED GRID DEFORMATION CODE FOR COMPLEX CONFIGURATIONS (복잡한 형상에 관한 삼차원 변형 Multi-Block 정렬격자 프로그램 개발)

  • Hoang, A.D.;Lee, Y.M.;Jung, S.K.;Nguyen, A.T.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.28-37
    • /
    • 2007
  • In this study, a multi-block structured grid deformation code based on a hybrid of a transfinite interpolation algorithm and spring analogy was developed. The configuration was modeled by a Bezier surface. A combination of the spring analogy for block vertices and the transfinite interpolation for interior grid points helps to increase the robustness and makes it suitable for distributed computing. An elliptic smoothing operator was applied to the block faces with sub-faces in order to maintain the grid smoothness and skewness. The capability of this code was demonstrated on a range of simple and complex configurations including an airfoil and a wing-body configuration.

A STUDY ON THE GRID GENERATION FOR TWO-DIMENSIONAL FLOW USING A POTENTIAL SOLVER (포텐셜 해석자를 이용한 2차원 유동의 격자 생성 연구)

  • Lee, J.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • One of the obstacles on the grid generation for complex geometries with multi-block structured grids is the domain decomposition. In this paper, the domain decomposition for two-dimensional flow is studied using the flow characteristics. The potential flow equation with the source distribution on the panel surface is solved to extract the information of the flow. The current approach is applied to a two-dimensional cylinder and Bi-NACA0012 problems. The generated grids are applied to generic flow solvers and reasonable results are obtained. It can be concluded that the current methods is useful in the domain decomposition for the multi-block structured grid.

A hypercube + + approach for multiblock structured grids (하이퍼큐브 ++를 이용한 다중블록 격자생성)

  • Park, Sang-Geun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.900-910
    • /
    • 1997
  • Multiblock structured grids are, to a large extent, capable of filling up topologically complex flow domains in an efficient way. The proposed approach enables to use different flow models in each different block and the easy incorporation of different grid refinement strategies for different blocks. Furthermore, it may be expected that this multiblock structured approach will naturally lead to the parallel executions of calculations per block on different vector processors. In this paper, the hypercube + + structure is proposed for topological informations on multiblock grids and the B-spline volume for geometrical informations. Three samples of the-three dimensional results are presented to demonstrate the capabilities of the present approach.

Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator (상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성)

  • Kim Y. S.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

A Study on the Development of a Three Dimensional Structured Finite Elements Generation Code (3차원 정렬 유한요소 생성 코드 개발에 대한 연구)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.11-17
    • /
    • 1999
  • A three dimensional finite element generation code has been developed attaching simple blocks. Block can be either a quadrature or a cube depending on the dimension of a subject considered. Finite element serendipity basis functions are employed to map elements between the computational domain and the physical domain. Elements can be generated with wser defined progressive ratio for each block. For blocks to be connected properly, a block should have a consistent numbering scheme for vertices, side nodes, edges and surfaces. In addition the edge information such as the number of elements and the progressive ratio for each direction should also be checked for interfaces to have unique node numbers. Having done so, user can add blocks with little worry about the orientation of blocks, Since the present the present code has been written by a Visual Basic language, it can be developed easily for a user interactive manner under a Windows environment.

  • PDF

Performance Analysis of a Dolphin-tail Rudder

  • Min K. S.;Chung K. N.;Kim Y. L
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • As a part of numerical and experimental research works for the prediction and improvement of ship's maneuvering performance, a study on the performance analysis of two different rudders has been carried out. While the planform shape and the aspect ratio of the rudders have been fixed, section shape has been changed. Conventional type of HMRI NP section and special type of dolphin-tail section have been employed. Performances of the rudders have been investigated by using CFD and compared with experimental data obtained in a wind tunnel. A commercial CFD program has been used to solve the RANS equations. Two-equation k-ro model has been applied to close the governing equations. Block-structured grids are used in the numerical calculation. Based upon the calculation results, the rudder with dolphin-tail section has shown a possibility of significantly improving rudder performance if utilized as the section of ship rudders.

  • PDF

A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION (Radial Basis Function을 사용한 격자 변형에 대한 연구)

  • Je, S.Y.;Jung, S.K.;Yang, Y.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF