• Title/Summary/Keyword: blending resin

Search Result 55, Processing Time 0.024 seconds

Mechanical Properties of Aminosilane-Treated Wood Flour/PVC/Nanoclay Composites (아미노실란으로 개질된 목분/PVC/나노점토 복합재의 기계적 특성)

  • Park, Sol-Mon;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.573-578
    • /
    • 2012
  • In general, most physical properties of wood/polyvinyl chloride (PVC) composites are lower than those of corresponding neat PVC resin because of poor interfacial adhesion between the hydrophilic wood flour and hydrophobic PVC. Therefore, in this study, we treated wood flour with three aminosilanes to improve wood/PVC interfacial adhesion strength, and eco-friendly wood/PVC/nanoclay composites were prepared by melt blending the aminosilane-treated wood flour, a heavy metal free PVC compound, and a type of nanoclay. The effects of treating wood flour with the aminosilanes and adding the nanoclay on the mechanical properties of the composites were investigated. Mechanical properties of the composites were investigated by universal testing machine (UTM), izod impact tester, dynamic mechanical analyzer (DMA), and thermomechanical analyzer (TMA). The tensile properties of the composites with the aminosilane-treated wood flour were considerably higher than those of the composites with neat wood flour. Furthermore, a small amount of the nanoclay improved mechanical properties of the composites. The performance of the wood/PVC composites was considerably improved by using the aminosilane-treated wood flour and the nanoclay.

Study on the Effect of Blending Ratios on the Antibacterial Activities of Chitosan/Gelatin Blend Solutions (혼합비율에 따른 키토산/젤라틴 혼합용액의 항균활성에 관한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo;Hong, Ji-Hyang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.405-411
    • /
    • 2005
  • Chitosan, second largest biomass after cellulose on earth, has potential for use as functional food package due to its antibacterial activity. However, due to high melting temperature of chitosan, chitosan films have been made by casting method. Because gelatin has relatively low molting temperature depending upon amount of plasticizer added, it was added to chitosan to produce commercially feasible film. The objective of the current study was to determine optimum blend ratio and amount of chitosan/gelatin blend solutions against antibacterial activities for extruder resin. Gram-positive bacteria (Bacillus cereus ATCC 14579 and Listeria monocytogenes ATCC 15313) and -negative bacteria (Escherichia coli ATCC 25922 and Salmonella enteritidis IFO 3313) were used. Paper (8 mm) diffusion and optical density methods were used to evaluate effect of different blending ratio solutions on the inhibition of bacterial growth. Measured clear none size ranged from 8 mm to 18.07 mm in paper diffusion test. For B. cereus, E. coli, and S. enteritidis, addition of $50\;{\mu}L$ blend solution (chitosan/gelatin = 2/8: 0.3 mg) resulted in clear zone on paper disc. In L. monocytogenes, inhibition effect was observed with 0.6 mg chitosan (chitosan/gelatin=4/6). Minimum inhibitory concentration (MIC) values of B. cerues, L. monocytogenes, E. coli, and S. enteritidis with addition of chitosan were 0.1461, 0.2419, 0.0980, and 0.0490 mg/mL, respectively, These results indicate possibility of producing commercially feasible film with addition of optimum chitosan/gelatin amount.

A Study on the Preparation of Durable Softening Water-repellenting Agent by Blending Acrylic Copolymer and Fatty Carbamide - I. Water-repellent Finish of Cotton Fabrics - (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구 - I. 면직물에의 발수가공 -)

  • Kim, Young-Keun;Lee, Chong-Min;Park, Eun-Kyung;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.345-356
    • /
    • 1994
  • Each of the three cationized compounds synthesized previously, poly(OMA-co-DAMA)[PODC], poly(DMA-co-DAMA)[PDDC] and poly(EMA-co-DAMA)[PEDC] was blended with waxes, emulsifiers and cationized fatty carbamide(ODTCC) synthesized in this study for the preparation of some durable softening water-repellenting agents, PODCW, PDDCW and PEDCW. The results of washability, tearing strength, crease recovery and contact angle of the cotton fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed remarkable improvement of the physical properties. Rating of water repellency of cotton fabric treated with PODCW was 80, but those treated with PDDCW and PEDCW were not high enough to use in industry. Proper curing temperature of the synthesized water-repelleting agents was $140^{\circ}C$; proper using concentration was 3wt%; sodium acetate was the best catalyst for water-repellenting agents among the used, and proper concentration was 0.6wt%. From the results of reaction mechanism of cellulosic fiber with water-repellenting agent and washability of the fibers treated with water-repellenting agents the prepared water-repellenting agent proved to be durable. Surface structures of cotton fabrics treated with water-repellenting agent were investigated by SEM.

  • PDF

Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend (바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구)

  • Dong-Hun Han;Young-Min Kim;Danbi Lee;Seongho Son;Geon-hee Seo;Hanseong Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.297-302
    • /
    • 2023
  • There are several methods for shaping foams, but the most commonly used methods involve the use of resin mixed with a foaming agent, which is then foamed under high temperature and pressure in the case of compression foaming, or foamed under high temperature without applying pressure in the case of atmospheric foaming. The polymers used for foaming require design and analysis of optimal foaming conditions in order to achieve foaming under ambient pressure. Environmentally friendly bio-based polymers face challenges when it comes to foaming on their own, which has led to ongoing research in blending them with resins capable of traditional foam production. This study investigates changes in the characteristics of bio-based polymer-EVA blend foams based on variations in the content of bio-based polymers and explores the optimal foaming conditions according to crosslinking. The correlation between foaming characteristics and mechanical properties of the foams was examined. Through this research, we gained insights into how the content of bio-based polymers affects the properties of foams containing bio-based polymers and identified differences between ambient pressure and high-pressure foaming processes. Additionally, the feasibility of commercializing bio-based polymer-EVA composite foams was confirmed.

The Study on Physical Properties and Applicability of Material of Polyamide-66/Glass Fiber Blends Composition to the Eyewear Frame (Polyamide-66/Glass fiber 블렌드 조성물의 물리적 특성 및 안경테 소재로써의 적용성에 관한 연구)

  • Son, Jin-Young;Lee, Ji-Eun;Choi, Kyung-Man;Bae, Yu-Hwan;Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2013
  • Purpose: In this study, we evaluated the physical and thermal properties of the compositions made by blending glass fiber (GF) of different contents into glass fiber polyamide-66, and investigated if the compositions applying to the glasses frame to replace the TR-90, which is polyamide-12 resin used as an injection-type spectacle frame material. Methods: To investigate the characteristics change of polyamide-66 (PA-66) compositions with the change of the content of glass fibers, we produced a composition of the content by using a twin-screw extruder. The mechanical strength of the composition production was measured and coating properties as well as cutting processability were evaluated. We evaluated the applicability of the glasses frame by comparison the results of new compositions with characterizations of traditional TR. Results: For the results of the characterization of Polyamide-66/GF composition, we found that the higher increase of content of the glass fiber, the less mold shrinkage rate, and the mechanical strength was increased. Tensile strength increased from $498kg/cm^2$ for 0 wt% of the content of the glass fibers to $849kg/cm^2$ for 30 wt% of the content of the glass fibers. As a result of a coating evaluation, the strength of coating was 4B in the GF 5wt% and 5B, which was extremely good coating characteristics, in the over than GF 5 wt%. Conclusions: In case that 30 wt% of the glass fiber was blended, the mechanical strength was greatly improved, the hardness was increased, injection temperature increased due to increase of the viscosity, and the flow mark of the product may occur. The paint coating of PA-66 blended with glass fiber was all excellent. With general evaluating physical properties and workability properties it was determined that around 10 wt% of the content of the glass fibers was possible to apply a spectacle frame.