Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.5.573

Mechanical Properties of Aminosilane-Treated Wood Flour/PVC/Nanoclay Composites  

Park, Sol-Mon (Department of Chemical Engineering, School of Engineering, Chungbuk National University)
Kim, Dae-Su (Department of Chemical Engineering, School of Engineering, Chungbuk National University)
Publication Information
Polymer(Korea) / v.36, no.5, 2012 , pp. 573-578 More about this Journal
Abstract
In general, most physical properties of wood/polyvinyl chloride (PVC) composites are lower than those of corresponding neat PVC resin because of poor interfacial adhesion between the hydrophilic wood flour and hydrophobic PVC. Therefore, in this study, we treated wood flour with three aminosilanes to improve wood/PVC interfacial adhesion strength, and eco-friendly wood/PVC/nanoclay composites were prepared by melt blending the aminosilane-treated wood flour, a heavy metal free PVC compound, and a type of nanoclay. The effects of treating wood flour with the aminosilanes and adding the nanoclay on the mechanical properties of the composites were investigated. Mechanical properties of the composites were investigated by universal testing machine (UTM), izod impact tester, dynamic mechanical analyzer (DMA), and thermomechanical analyzer (TMA). The tensile properties of the composites with the aminosilane-treated wood flour were considerably higher than those of the composites with neat wood flour. Furthermore, a small amount of the nanoclay improved mechanical properties of the composites. The performance of the wood/PVC composites was considerably improved by using the aminosilane-treated wood flour and the nanoclay.
Keywords
PVC; wood; aminosilane; nanoclay; composites;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Guo, Y. Tang, and Z. Xu, J. Hazard. Mater., 179, 203(2010).   DOI   ScienceOn
2 Q. Li and L. M. Matuana, J. Appl. Polym. Sci., 88, 278 (2003).   DOI   ScienceOn
3 H. Ismail and H. P. S. A. Khalil, Polym. Test., 20, 33 (2000).   DOI   ScienceOn
4 M. Bengtsson and K. Oksman, Compos. Sci. Technol., 66, 2177 (2006).   DOI   ScienceOn
5 Y. H. Cui, S. Lee, and J. Tao, J. Vinyl Addit. Techn., 14, 211 (2008).   DOI   ScienceOn
6 B. Park and D. S. Kim, Polymer(Korea), 35, 124 (2011).
7 J. Ren, Y. Huang, Y. Liu, and X. Tang, Polym. Test., 24, 316 (2005).   DOI   ScienceOn
8 J. George, M. Sreekala, and S. Thomas, Polym. Eng. Sci., 41, 1471 (2001).   DOI   ScienceOn
9 Y. Kim and J. L. White, J. Appl. Polym. Sci., 90, 1581 (2003).   DOI   ScienceOn
10 L. Kovarova, A. Kalendova, J.-F. Gerard, J. Malac, J. Simonik, and Z. Weiss, Macromol. Sympo., 221, 105 (2005).   DOI   ScienceOn
11 D. Maldas, B. V. Kokta, R. G. Raj, and C. Daneault, Polymer, 29, 1255 (1988).   DOI   ScienceOn
12 L. M. Matuana, R. T. Woodhams, J. J. Balatinecz, and C. B. Park, Polym. Compos., 19, 446 (1998).   DOI   ScienceOn
13 C. E. Wilkes, J. W. Summers, and C. A. Daniels, PVC Handbook, Carl Hanser Verlag, Munich, 2005.
14 J. Z. Lu, Q. Wu, and H. S. McNabb, Wood Fiber Sci., 32, 88 (2000).
15 H. K. Lee and D. S. Kim, J. Appl. Polym. Sci., 111, 2769 (2009).   DOI   ScienceOn
16 G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico, Polym. Compos., 28, 98 (2007).   DOI   ScienceOn
17 M. H. Schnieder, Wood Fiber Sci., 26, 142 (1994).
18 B. L. Shah, L. M. Matuana, and P. A. Heiden, J. Vinyl Addit. Techn., 11, 160 (2005).   DOI   ScienceOn
19 Y. Zhao, K. Wang, F. Zhu, P. Xue, and M. Jia, Polym. Degrad. Stabil., 91, 2874 (2006).   DOI   ScienceOn
20 H. Jiang and D. P. Kamsem, J. Vinyl Addit. Techn., 10, 59 (2004).   DOI   ScienceOn
21 M. Takatani and T. Okamoto, Mol. Cryst. Liq. Cryst., 483, 326 (2008).   DOI   ScienceOn