• 제목/요약/키워드: blended wing body

Search Result 20, Processing Time 0.017 seconds

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Aerodynamic Analysis of an Arbitrary Three-Dimensional Blended Wing Body Aircraft using Panel Method (패널법을 이용한 임의의 3차원 BWB 형상 항공기에 대한 공력해석)

  • Lee, Sea-Wook;Yang, Jin-Yeol;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1066-1072
    • /
    • 2009
  • A panel method based on potential flow theory is developed for the steady/unsteady aerodynamic analysis of arbitrary three-dimensional Blended Wing Body aircraft. The panel method uses the piecewise constant source and doublet singularities as a solution. This potential based panel method is founded on the Dirichlet boundary condition and coupled with the time-stepping method. The present method uses the time-stepping loop to simulate the unsteady motion of the aircraft. The present method can solve the three-dimensional flow over the complex bodies with less computing time and provide various aerodynamic derivatives to secure the stability of Blended Wing Body aircraft. That will do much for practical applications such as aerodynamic designs and analysis of aircraft configurations and flight simulation.

Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target

  • Sun, Chunya;Song, Baowei;Wang, Peng;Wang, Xinjing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.693-704
    • /
    • 2017
  • Blended-Wing-Body Underwater Glider (BWBUG), which has excellent hydrodynamic performance, is a new kind of underwater glider in recent years. In the shape optimization of BWBUG, the lift to drag ratio is often used as the optimization target. However this results in lose of internal space. In this paper, the energy reserve is defined as the direct proportional function of the internal space of BWBUG. A motion model, which relates gliding range to steady gliding motion parameters as well as energy consumption, is established by analyzing the steady-state gliding motion. The maximum gliding range is used as the optimization target instead of the lift to drag ratio to optimizing the shape of BWBUG. The result of optimization shows that the maximum gliding range of initial design is increased by 32.1% though an Efficient Global Optimization (EGO) process.

Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

  • Sun, Chunya;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.995-1006
    • /
    • 2015
  • Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders

  • Li, Chengshan;Wang, Peng;Li, Tianbo;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.455-467
    • /
    • 2020
  • Shape design optimization for Blended-wing-body Underwater Gliders (BWBUGs) is usually computationally expensive. In our previous work, a simplified shape optimization (SSO) strategy is proposed to alleviate the computational burden, which optimizes some of the Sectional Airfoils (SAs) instead of optimizing the 3-D shape of the BWBUG directly. Test results show that SSO can obtain a good result at a much smaller computational cost when three SAs are adopted. In this paper, the performance of SSO is investigated with a different number of SAs selected from the BWBUG, and the results are compared with that of the Direct Shape Optimization (DSO) strategy. Results indicate that SSO tends to perform better with more SAs or even outperforms the DSO strategy in some cases, and the amount of saved computational cost also increases when more SAs are adopted, which provides some reference significance and enlarges the applicability range of SSO.

Aerodynamic Characteristics of the Blended-Wing-Body for the Position and Aspect Ratio of the Inlet and Outlet of an Embedded Distributed Propulsion System (Embedded Type 분산 추진 장치의 입·출구 형상 및 위치 변화에 따른 융합익기의 공력해석)

  • Kim, Hyo-Seop;Choi, Hyun-Min;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.467-474
    • /
    • 2012
  • UAVs for reconnaissance and intelligence operations require long endurance capability, which demands high efficiency of the propulsion system. The distributed propulsion system(DPS) generates the thrust by replacing a large propulsion system with a number of small propulsion systems. A DPS distributed along the wing span can produce gains in propulsion efficiency by reducing ejection velocity. Also, the ingestion of boundary layers through the distributed DPS inlet and ejecting flow from the outlet can improve the lift to drag ratio of the vehicle. This study investigates the effects of locations and size of the inlet and outlet of the DPS on the blended-wing-body design based on Eppler 337 airfoil, with a CFD tool. The fans in the DPS are modeled as actuator disks for computational efficiency. The best location and aspect ratio of the inlet and outlet are found from lift-to-drag ratio and pitching moment considerations.

CFD Analysis of Engine Inlet Condition for BWB Airfoil using EDISON (EDISON을 이용한 BWB 익형 엔진흡기 유동 해석)

  • Lee, Min-U;Kim, Gi-Deok;Bang, Jun;Lee, Su-Gwan;Jeong, Yong-Su;Han, Jin-Su;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.57-60
    • /
    • 2012
  • 본 연구에서는 현재 국내외에서 연구 중인 Blended Wing Body(BWB) 항공기의 엔진흡기 유동을 해석하기 위해 익형과 비행조건을 변화시켜 가며 전산유체해석을 수행하였다. 엔진의 위치에 따라 엔진이 효율적으로 동작하기 위한 조건인 흡기에서의 유동 속도와 그 분산을 중심으로 해석한 결과 익형 표면에서는 경계층의 영향으로 엔진흡기에서 유동속도가 낮고, 속도분산이 높음을 확인할 수 있었다. 한편, 익형 아랫면에서는 높은 비행속도에서 속도분산이 급격히 증가하였다. 이를 통해, 해석에 사용한 익형이 BWB의 동체로 활용하기에 적합한 엔진흡기조건을 갖는지 판별하였다.

  • PDF

Aerodynamic Analysis of the Blended Wing Body Type MAV using the Time-Domain Panel Method (시간영역 패널법을 이용한 융합익기 형상 초소형 무인기의 공력해석)

  • Park, Jin-Han;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.637-646
    • /
    • 2010
  • A time-domain panel method based on the potential flow theory and the time-stepping method is developed to predict the steady/unsteady aerodynamic characteristics of FM07, which is the BWB (Blended-wing body) type MAV. In the aerodynamic analyses, we used two types of the initial model(Case I) and the improved model(Case II), which is moved the gravity center toward the rear and has larger aspect ratio. In the steady aerodynamic analyses, it is revealed that improved model has higher lift to drag ratio(L/D) and more stable pitch characteristic than those of the initial model. In the unsteady aerodynamic analyses for sudden acceleration motion similar to the launch phase of MAV, it seemed that there is a rapid increase of the lift coefficient after the launch and unsteady results are good agreed compare with steady results in just a few times. In the analysis for pitch oscillation motion, which is occurred at the cruise condition of the FM07, it shows that unsteady aerodynamic coefficients looped around steady results and the improved model has more sensitive aerodynamic characteristics.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.