• Title/Summary/Keyword: blended structure

Search Result 161, Processing Time 0.026 seconds

A Study on high Quality of Antiwashout Underwater Concrete (수중불분리성콘크리트의 고품질화 연구)

  • 문한영;김성수;전중규;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.111-120
    • /
    • 2000
  • In case of constructing concrete structure under water, generally concrete mixed with antiwashout admixture, high range water reducer, or AE-water reducing agent etc has been manufactured to ensure the quality of antiwashout underwater concrete because of being difficulty in ascertaining construction situation by the naked eye. The properties of high quality antiwashout underwater concrete that were aimed at affluent fluidity, workability and the compressive strength of 450 kgf/$\textrm{cm}^2$ at 28 ages using two types of blended cements are following as;(1) Setting time of antiwashout underwater concretes using blended cements was more greatly delayed than that of control concrete, however, was satisfied with criteria value of "Quality standard specification of antiwashout admixture for concrete".(2) As a test results of slump flow, efflux time and box elevation of head, it was found that workability of high quality antiwashout underwater concrete was improved. (3) Heat evolution amount of OPC was 1.5 times as high as that of two types of bended cements in 72 hours. (4) Suspended solids of antiwashout underwater concrete using blended cements was more than that of control concrete, also compressive strength of high quality antiwashout underwater concrete was very low in early age, but was better than that of control concrete as to increasing ages.

Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag (고로 서냉슬래그 혼합 시멘트 페이스트의 유동성)

  • Lee, Seung-Heun;Park, Seol-Woo;Yoo, Dong-Woo;Kim, Dong-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.584-590
    • /
    • 2014
  • Air-cooled slag showed grindability approximately twice as good as that of water-cooled slag. While the studied water-cooled slag was composed of glass as constituent mineral, the air-cooled slag was mainly composed of melilite. It is assumed that the sulfur in air-cooled slag is mainly in the form of CaS, which is oxidized into $CaS_2O_3$ when in contact with air. $CaS_2O_3$, then, is released mainly as $S_2O{_3}^{2-}$ion when in contact with water. However, the sulfur in water-cooled slag functioned as a constituent of the glass structure, so the$S_2O{_3}^{2-}$ ion was not released even when in contact with water. When no chemical admixture was added, the blended cement of air-cooled slag showed higher fluidity and retention effect than those of the blended cement of the water-cooled slag. It seems that these discrepancies are caused by the initial hydration inhibition effect of cement by the $S_2O{_3}^{2-}$ ion of air-cooled slag. When a superplasticizer is added, the air-cooled slag used more superplasticizer than did the blast furnace slag for the same flow because the air-cooled slag had higher specific surface area due to the presence of micro-pores. Meanwhile, the blended cement of the air-cooled slag showed a greater fluidity retention effect than that of the blended cement of the water-cooled slag. This may be a combined effect of the increased use of superplasticizer and the presence of released $S_2O{_3}^{2-}$ ion; however, further, more detailed studies will need to be conducted.

Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure - (고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 -)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Heparin Release from Hydrophobic Polymers : (I) In Vitro Studies

  • Kim, Sung-Ho;Kim, Sung-Wan
    • Archives of Pharmacal Research
    • /
    • v.9 no.4
    • /
    • pp.193-199
    • /
    • 1986
  • The release of heparin from monolithic devices composed of different ratios of polythylene oxide (PEO MW 20,000) and hydrophobic polydimethylsiloxane or polyurethane was investigated. Water soluble PEO blended into the polymers provided a controlled release of heparin. The release rate of heparin could be controlled by varying the content of PEO. The heparin release rate from the devices increased as the content of PEO in the devices increased. The release mechanism may be associated with the creation of pore of domain through the devices following the swelling and the change in the physical structure of the polymer network. Hydrophobic polydimethylsiloxanes and polyurethanes containing PEO can provide an antith rombogenic material for prologed release of heparin from blended system.

  • PDF

Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review

  • Najigivi, Alireza;Nazerigivi, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2017
  • During the past decades, development of reinforcing materials caused a revolution in the structure of high strength and high performance cement-based concrete. Among the most important and exciting reinforcing materials, Steel Fiber (SF) becomes a widely used in the recent years. The main reason for addition of SF is to enhance the toughness and tensile strength and limit development and propagation of cracks and deformation characteristics of the SF blended concrete. Basically this technique of strengthening the concrete structures considerably modifies the physical and mechanical properties of plain cement-based concrete which is brittle in nature with low flexural and tensile strength compared to its intrinsic compressive strength. This paper presents an overview of the work carried out on the use of SF as reinforcement in cement-based concrete matrix. Reported properties in this study are fresh properties, mechanical and durability of the blended concretes.

Flow properties of Ultra Fine Cement with Superplasticizer (유동화재 변화에 따른 초미립자 시멘트의 유동특성)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.58-63
    • /
    • 1999
  • Almost all concrete structures have many inevitable cracks for various reasons such as drying shrinkage, heat liberation of cement, fatigues or repeating loads and movements. Conventionally, they are repaired with epoxy materials. The Epoxy resins used by repair materials are different from properties of the base concrete materials such as thermal and mechanical properties - thermal expansion coefficients, bending strength. And the epoxy resin cannot release the water inside the concrete structure and cause corrosion of the steel bars. In this study, before the experiment got launched, we had analyzed cement and slag. Then We blended the two grades of ultra fine cement using high blaine cement and slag. And the cement slurry was produced by water and suprplasticizer to each blended ultra fine cement in various conditions. The slurry produced by each conditions was evaluated with flow properties such as viscosity, dropping time, segregation and observation of dry surface after injection.

  • PDF

Fly ash-Slag-Cement Composite

  • Bang, Wan-Keun;Lee, Seung-Kyou;Lee, Seung-Heun;Kim, Chang-Eun
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.286-290
    • /
    • 2000
  • The hydration behavior of fly ash and slag on cement paste were investigated. Early stage of hydration reaction was delayed by mixing fly ash and/or slag with cement, but production of C-S-H hydrates by pozzolanic reaction densified the microstructure. The Ca/Si ratio of C-S-H hydrates in OPC and blended cement of fly ash 50%, slag 50%, fly ash+slag 50% were 2.24, 1.80, 1.82 and 1.97, respectively. The C-S-H gel with low Ca/Si ratio showed rather reticulate than needle-like structure.

  • PDF

An Analysis of New Textile Material Developmental Trend (섬유 신소재 개발 Trend에 대한 고찰)

  • 이유경;김순심
    • Korean Journal of Rural Living Science
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1995
  • The new textile materials may be defined as textile materials different from already existing ones in the physical and chemical structure, manufacturing process, or end-use property. The present time what is called the post-industrial society is characterized by rapid change and new technology. Also, textile materials have been changed rapidly and diversely in the post-industrial society than in any other periods. The study aimed to analyze the trend of new tektite materials development in Korea and to forecast the development trend in the future. To investigate the trend of new textile materials, various written materials and informations were collected from the manufacturers, textile related periodicals, and research journals, and they were analyzed. The period of analysis was from January 1992 to May 1995. The results of this research are as followings : (1) Mixed textile materiasl such as bicomponent fiber, blended yam and blended fabric were increased. (2) High technology has an important effect upon new textile material development. (3) functional textile materials were increased (4) The high value-added products were increased. (5) The naturalized textile materials were increased.

  • PDF

Selecting optimized mix proportion of bagasse ash blended high performance concrete using analytical hierarchy process (AHP)

  • Praveenkumar, S.;Sankarasubramanian, G.;Sindhu, S.
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.459-470
    • /
    • 2019
  • Apart from strength properties, durability, toughness and workability are also important criteria in defining the performance of a concrete structure. Hence "High Performance Concrete (HPC)" is introduced. It is different from high strength concrete and can have various applications. In this paper, the properties (Mechanical and Durability) of High Performance Concrete blended with bagasse ash at 5%, 10%, 15% and 20% are studied. However, it is difficult to analyze the performance based on different properties obtained from different experiments. Hence it is necessary to combine all the criteria/properties into a single value to obtain a result by a technique called Analytical Hierarchy Process (AHP).It is an effective tool for dealing with complex decision making, and may aid the decision maker to set priorities and make the best decision. In addition, the AHP incorporates a useful technique for checking the consistency of the decision maker?s evaluations, thus reducing the bias in the decision making process.