• 제목/요약/키워드: blended coal

검색결과 25건 처리시간 0.034초

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

15kW급 미분탄 연소로내에서 바이오매스 혼소율 변화에 따른 연소 특성 비교 (Combustion Charateristics of Biomass Blends on a 15KW Pulverized Coal furnaces)

  • 이상민;성연모;최민성;문철언;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.41-44
    • /
    • 2014
  • This study focused on the effect of the biomass blended ratio on air-staged pulverized coal furnace. The hybrid NOx reduction technology between fuel blending and air staging has been applied in an air-staged pulverized coal fired furnace. The results indicated that co-firing biomass with coal could reduce NOx emissions in an air-staged combustion. In addition, carbon burnout and flame temperature increased under the air-staged condition. A dominant synergistic effect on NOx reduction and carbon burnout was observed when biomass co-firing with coal was applied in air staged combustion.

  • PDF

Pyrolyzed Fuel Oil/Coal-tar 혼합원료의 열중합 반응에 따른 Pitch 제조 특성 (Characteristics of Pitch Production of Pyrolyzed Fuel Oil/Coal-tar Blending Feedstock by Thermal Polymerization Reaction)

  • 이은별;김형기
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.328-333
    • /
    • 2020
  • 본 연구에서는 PFO와 Coal-tar의 구조와 열 중합 거동 분석을 통해 PFO와 Coal-tar으로 구성된 혼합 원료의 피치 합성 간 제조 특성을 확인하였다. 원소분석과 FT-IR 분석을 통해, PFO와 Coal-tar 각각 0.355, 0.818로 방향족화도 수치를 확인하였다. 또한, PFO와 Coal-tar의 열중량 분석을 통해 질량 감소곡선의 차이를 확인하였으며, 이러한 현상은 방향족 화도와 관능기 함량에 따른 구조적 안정성에 기인한 것으로 판단된다. 피치 제조 특성은 PFO를 원료로 사용한 피치가 혼합원료로부터 제조된 피치보다 평균적으로 낮은 수율과 높은 연화점을 보임을 확인하였다. 특히 유사한 연화점을 가지는 P360 (138.5 ℃)과 B420 (141.4 ℃)을 비교하였을 때, 두 피치의 탄화수율은 각각 29.89, 49.03 wt%로 Coal-tar가 혼합된 경우 약 20 wt% 향상됨을 확인하였다. 이러한 결과는 다량의 알킬기를 포함하여 높은 피치 중합 반응성을 가지는 PFO와 높은 열적 안정성을 가지는 Coal-tar의 혼합에 기인한 것으로 판단된다.

Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite

  • Bai, Byong Chol;Kim, Jong Gu;Kim, Ji Hong;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.78-83
    • /
    • 2018
  • Pyrolyzed fuel oil (PFO) and coal tar was blended in the feedstock to produce pitch via thermal reaction. The blended feedstock and produced pitch were characterized to investigate the effect of the blending ratio. In the feedstock analysis, coal tar exhibited a distinct distribution in its boiling point related to the number of aromatic rings and showed higher Conradson carbon residue and aromaticity values of 26.6% and 0.67%, respectively, compared with PFO. The pitch yield changed with the blending ratio, while the softening point of the produced pitch was determined by the PFO ratio in the blends. On the other hand, the carbon yield increased with increasing coal tar ratio in the blends. This phenomenon indicated that the formation of aliphatic bridges in PFO may occur during the thermal reaction, resulting in an increased softening point. In addition, it was confirmed that the molecular weight distribution of the produced pitch was associated with the predominant feedstock in the blend.

가공된 석탄재를 사용한 석탄재혼합시멘트의 모르터 특성 (The Mortar Properties of Portland Cements Blended with Modified Coal Ashes)

  • 홍원표;노재성;조헌영;정수영;김무한
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.833-840
    • /
    • 1990
  • For the development of multi-functional materials which has water reducing power, air entraining power and waterproofing power as well as blending additive in cement mortar the coal ash was modified with asphalt-stearic acid or asphalt-boiled oil mixtures by mechanical treatment. And the physical properties of cement mortar blended with modified coal ashes were compared with those of the water-tightness-cement mortar and the ordinary-portland-cement mortar added with AE.water reducing agent. The mortar of coalash-blend-cement modified with asphalt-stearic mixture was increased acid about 20% in initial strengths and decreased about 20% in water absorption ratio than those of ordinary coalash-blend-cement. The mortar of coalash-blend-cement modified with asphalt-bolied oil mixture was similar to the cement mortar added with AE.water reducing agent in water reduction ratio, air entraining conents and the initial strengths, also was similar to the water-tightness-cement mortar in water absorption and water permeability ratios.

  • PDF

역청탄과 아역청탄 혼합연소조건에서 입자크기와 혼소율이 열물성반응과 연소특성에 미치는 영향 (Effect of Particle size and Blending Ratio on Thermo Reaction and Combustion Characteristics in Co-firing with Bituminous and Sub-bituminous Coals)

  • 성연모;안재우;문철언;안성율;김성철;서상일;김태형;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.65-73
    • /
    • 2010
  • In order to provide fundamental information for developing reaction model in the practical blended coal power plants, effects of particle size and blending ratio on combustion characteristics and thermal reaction in co-firing with bituminous and sub-bituminous coals were experimentally investigated using a TGA and a laboratory-scale burner. Characteristic parameters including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. Distributions of flame length and mean particle temperature were investigated from the visualization of flames in slit-burner system. As coal particle size decreased and volatile matter content increased, characteristic temperatures and activation energy decreased. The ignition/burnout characteristics and activation energy are linearly influenced by a variation in particle size and blending ratio. These results indicated that the control of the coal blending ratio can improve the combustion efficiency for sub-bituminous coals and the ignition characteristics for bituminous coals.

300MW급 Shell형 1단 분류층 가스화기 성능에 대한 전산수치해석 : 석탄·바이오매스 혼합비에 따른 CO2 가스화 반응 (Numerical Study on 300 MW Shell-Type One-Stage Entrained Flow Bed Gasifier : Effect of Coal·Biomass Blending Ratio on CO2 Gasification)

  • 홍정우;박상신;송지훈;황정호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.274-284
    • /
    • 2012
  • Recently, gasification technology for coal blended with biomass has been an issue. Especially, An advantages of coal blended with biomass are 1) obtaining high cold gas efficiency, 2) obtaining syn-gas of high-high heating value (HHV), and 3) controlling occurrence of $CO_2$. In this study, the efficiency and characteristic of 300 MW Shell type gasifier were predicted using CFD simulation. The CFD simulation was performed for biomass coal blending ratios of 0~0.2, 0.5, 1 and $O_2$/fuel ratios of 0.5~0.84. Kinetic parameters (A, $E_a$) obtained by $CO_2$ gasification experiment were used as inputs for the simulation. In results of CFD simulation, residence times of particle in 300MW Shell type gasifer presented as 7.39 sec ~ 13.65 sec. Temperature of exit increased with $O_2$/fuel ratio as 1400 K ~ 2800 K, while there is not an effects of biomass coal blending ratios. Considering both aspects of temperature for causing wall slagging and high cold gas efficiency, the optimal $O_2$/fuel ratio and blending ratio were found to be 0.585 and 0.05, respectively.

Derivation of TMA Slagging Indices for Blended Coals

  • Park, Ho Young;Baek, Se Hyun;Kim, Hyun Hee;Park, Sang Bin
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권2호
    • /
    • pp.127-131
    • /
    • 2017
  • The present paper describes the slagging field data obtained with the one-dimensional process model for the 500 MW tangentially coal fired boiler in Korea. To obtain slagging field data in terms of thermal resistances [$m^2{\cdot}^{\circ}C/kW$], a number of plant data were collected and analyzed with the one-dimensional modelling software at 500 MW full load. The slagging field data for the primary superheater were obtained for six coal blends, and compared with two TMA (Thermo-Mechanical analyzer) slagging indices and the numerical slagging index, along with the conventional slagging indices which were modified with the ash loading. The advanced two TMA indices for six blended coals give a good slagging tendency when comparing them with the slagging field data, while the modified conventional slagging indices give a relatively poor agreement.

저등급탄과 혼탄의 연소거동에 관한 실험적 연구 (An Experimental Study on Combustion Behavior of Different Ranks of Coals and Their Blends)

  • 문철언;성연모;안성율;김태경;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.205-208
    • /
    • 2012
  • In this study, the thermal behavior and combustion characteristics of different ranks of coals and their blends were investigated to obtain information necessary for the evaluation of the co-processing of blends with low-rank coals. Thermogravimetric analysis(TGA) and differential thermal analysis(DTA) were carried out at different temperature from ambient temperature to $800^{\circ}C$, and a laboratory-scale pulverized coal combustion burner was used with coal feeing rate of $1.04{\times}10^{-4}kg/s$.

  • PDF

500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구 (A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler)

  • 강기태;송주헌;윤민지;이병화;김승모;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.