• 제목/요약/키워드: blastocyst complementation

검색결과 5건 처리시간 0.016초

In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges

  • Konstantina-Maria Founta;Costis Papanayotou
    • International Journal of Stem Cells
    • /
    • 제15권2호
    • /
    • pp.113-121
    • /
    • 2022
  • The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients' own cells. Novel approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.

Advances in research to restore vision

  • Kun Do Rhee
    • 한국동물생명공학회지
    • /
    • 제38권1호
    • /
    • pp.2-9
    • /
    • 2023
  • Mammalian eyes have a limited ability to regenerate once neurons degenerate. This results in visual impairment that impacts the quality of life among adult populations as well as in young children leading to lifelong consequences. Various therapies are in development to restore vision, and these include gene therapy, stem cell therapy, in-vivo transdifferentiation, and transplantation of a patient's whole eye obtained from interspecies blastocyst complementation. This review discusses advances in the research as well as hurdles that need to be resolved to have a successful restoration of vision.

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by Using Tetraploid Complementation

  • Park, S.M.;Song, S.J.;Uhm, S.J.;Cho, S.G.;Park, S.P.;Lim, J.H.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1641-1646
    • /
    • 2004
  • The objective of this study was to generate transgenic mice expressing human resistin gene by using the tetraploidembryonic stem (ES) cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR, cloned into $pCR^{(R)}$ 2.1 $TOPO^{(R)}$ vector and constructed in pCMV-Tag4C vector. Mammalian expression plasmid containing human resistin was transfected into D3-GL ES cells by Lipofectamine 2,000, and then after 10-12 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec (fusion rate: 2,114/2,256, 93.5%) and cultured up to the blastocyst stage (development rate: 1,862/2,114, 94.6%). The selected 15-20 ES cells were injected into tetraploid blastocysts, and then transferred into the uteri of E 2.5 d pseudopregnant recipient mice. To investigate the gestation progress, two E 19.5 mused fetuses were recovered by Cesarean section of which one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, our findings demonstrate that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mice for the rapid analysis of gene function in vivo.

Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination

  • Kim, Se Eun;Kim, Ji Woo;Kim, Yeong Ji;Kwon, Deug-Nam;Kim, Jin-Hoi;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.564-570
    • /
    • 2016
  • The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5' arm, 1.8-kb 3' arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using $300{\mu}g/mL$ G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3' and 5' arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR-restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene.