Browse > Article
http://dx.doi.org/10.5713/ajas.15.0244

Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination  

Kim, Se Eun (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Kim, Ji Woo (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Kim, Yeong Ji (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Kwon, Deug-Nam (Department of Animal Biotechnology, Konkuk University)
Kim, Jin-Hoi (Department of Animal Biotechnology, Konkuk University)
Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.4, 2016 , pp. 564-570 More about this Journal
Abstract
The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5' arm, 1.8-kb 3' arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using $300{\mu}g/mL$ G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3' and 5' arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR-restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene.
Keywords
Knockout; Homologous Recombination; Transcription Activator-like Effector Nuclease [TALEN]; Sal-like 1 Gene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, K. S., Y. J. Kim, M. Kim, B. H. Lee, S. Y. Heo, M. J. Kang, Y. K. Kang, J. W. Lee, K. K. Lee, J. H. Kim, W. G. Nho, S. S. Hwang, J. S. Woo, J. K. Park, S. B. Park, and H. Shim. 2011. Resurrection of an alpha-1,3-galactosyltransferase genetargeted miniature pig by recloning using postmortem ear skin fibroblast. Theriogenology 75:933-939.   DOI
2 Carlson, D. F., W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot, M. Christian, D. F. Voytas, C. R. Long, C. B. Whitelaw, and S. C. Fahrenkrug. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA. 109:17382-17387.   DOI
3 Dai, Y., T. D. Vaught, J. Boone, S. H. Chen, C. J. Phelps, S. Ball, J. A. Monahan, P. M. Jobst, K. J. McCreath, A. E. Lamborn, J. L. Cowell-Lucero, K. D. Wells, A. Colman, I. A. Polejaeva, and D. L. Ayares 2002. Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20: 251-255.   DOI
4 Denning, C. and H. Priddle. 2003. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction 126: 1-11.   DOI
5 Hai, T., F. Teng, R. Guo, W. Li, and Q. Zhou. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24:372-375.   DOI
6 Kim, J. W., H. M. Kim, S. M. Lee, and M. J. Kang. 2012. Porcine knock-in fibroblasts expressing hDAF on ${\alpha}$-1,3-galactosyltransferase (GGTA1) gene locus. Asian Australas. J. Anim. Sci. 25:1473-1480.   DOI
7 Klumiuk, N., B. Aigner, G. Brem, and E. Wolf. 2010. Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. 77:209-221.
8 Kobayashi, T., T. Yamaguchi, S. Hamanaka, M. Kato-Itoh, Y. Yamazaki, M. Ibata, H. Sato, Y. S. Lee, J. Usui, A. S. Knisely, M. Hirabayashi, and H. Nakauchi. 2010. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787-799.   DOI
9 Laible, G. and L. Alonso-Gonzalez. 2009. Gene targeting from laboratory to livestock: Current status and emerging concepts. Biotechnol. J. 4:1278-1292.   DOI
10 Lai, L., D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, and R. S. Prather. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092.   DOI
11 Liu, Y., R. Yang, Z. He, and W. Q. Gao. 2013. Generation of functional organs from stem cells. Cell Regen. 2:1   DOI
12 Sprangers, B., M. Waer, and A. D. Billiau. 2008. Xenotransplantation: Where are we in 2008? Kidney Int. 74: 14-21.   DOI
13 Matsunari, H., H. Nagashima, M. Watanabe, K. Umeyama, K. Nakano, M. Nagaya, T. Kobayashi, T. Yamaguchi, R. Sumazaki, L. A. Herzenberg, and H. Nakauchi. 2013. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc. Natl. Acad. Sci. USA. 110:4557-4562.   DOI
14 Ni, W., J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I.A. Polejaeva, and C. Chen. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9:e106718.   DOI
15 Nishinakamura, R. and M. Takasato. 2005. Essential roles of Sall1 in kidney development. Kidney Int. 68:1948-1950.   DOI
16 Takahashi, K. and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.   DOI
17 Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluriotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872.   DOI
18 Tan, W., D. F. Carlson, C. A. Lancto, J. R. Garbe, D. A. Webster, P. B. Hackett, and S. C. Fahrenkrug 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl. Acad. Sci. USA. 110:16526-16531.   DOI
19 Usui, J., T. Kobayashi, T. Yamaguchi, A. S. Knisely, R. Nishinakamura, and H. Nakauchi. 2012. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 180:2417-2426.   DOI
20 Ye, Y., M. Niekrasz, S. Kosanke, R. Welsh, H. E. Jordan, J. C. Fox, W. C. Edwards, C. Maxwell, and D. K. Cooper. 1994. The pig as a potential organ donor for man. A study of potentially transferable disease from donor pig to recipient man. Transplantation 57:694-703.   DOI
21 Whitworth, K. M., K. Lee, J. A. Benne, B. P. Beaton, L. D. Spate, S. L. Murphy, M. S. Samuel, J. Mao, C. O'Gorman, E. M. Walters, C. N. Murphy, J. Driver, A. Mileham, D. McLaren, K. D. Wells, and R. S. Prather. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitroderived oocytes and embryos. Biol. Reprod. 91:78.   DOI
22 Wolf, E., W. Schernthaner, V. Zakhartchenko, K. Prelle, M. Stojkovic, and G. Brem. 2000. Transgenic technology in farm animals - progress and perspectives. Exp. Physiol. 85:615-625.   DOI
23 Xin, J., H. Yang, N. Fan, B. Zhao, Z. Ouyang, Z. Liu, Y. Zhao, X. Li, J. Song, Y. Yang, Q. Zou, Q. Yan, Y. Zeng, and L. Lai. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8:e84250.   DOI
24 Yao, J., J. Huang, T. Hai, X. Wang, G. Qin, H. Zhang, R. Wu, C. Cao, J. J. Xi, Z. Yuan, and J. Zhao. 2014. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci. Rep. 4 Article number: 6926.