• Title/Summary/Keyword: blasting

Search Result 1,529, Processing Time 0.028 seconds

A Study on Development of Rock Blasting Design Program (암 발파설계 프로그램 개발에 관한 연구)

  • 강추원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.223-228
    • /
    • 2000
  • In this study, RFD(Rock Blasting Design) program was developed to perform easily on plans of rock blasting. This program has abilities as follows, that is. the test blasting plan, the bench blasting plan, and the blasting vibration analysis. The value of geological property and blasting constants was offered by database, input value of variety constants repeatedly is planned out, faster and easier. And a value of input constant may be used by user for necessity.

  • PDF

A Study on Development of Rock Blasting Design Program (암 발파설계 프로그램 개발에 관한 연구)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.469-474
    • /
    • 2000
  • In this study, RBD(Rock Blasting Design) program was developed to perform easily on plans of rock blasting. This program has abilities as follows, that is, the test blasting plan, the bench blasting plan, and the blasting vibration analysis. The value of geological property and blasting constants was offered by database, input value of variety constants repeatedly is planned out, faster and easier. And a value of input constant may be used by user for necessity.

  • PDF

Tunnel Blasting Design with Equations Obtained from Borehole and Crater Blasting (시추공 및 누두공 발파자료의 터널설계 적용)

  • 양형식;임성식;김원범
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.327-333
    • /
    • 2003
  • Characteristics of vibration propagation of borehole blasting were analyzed with 578 borehole vibration data obtained from 23 sites which were used in tunnel and underground space design, and 221 tunnel vibration data fron 4 sites of tunnel under construction. Analysis results on the damping of vibration velocity show that site factors in borehole blasting were higher than those in tunnel blasting. And the critical charge calculated from regression equations at large scaled distance was lower in borehole blasting. Dominant frequency was in the range of 30∼60Hz for the borehole blasting and 60∼90Hz for the tunnel blasting. As a conclusion, the borehole blasting data should not be used on the tunnel blasting design without careful statistical analysis.

A Case Study of Deck-Charge Blasting Using Electronic Blasting Systems In Urban Area (분산장약공법을 이용한 도심지 전자발파 시공사례)

  • Son, Young-Bok;Kim, Gab-Soo;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.21-26
    • /
    • 2016
  • In case of urban blasting works at near neighbors, the size of one blasting should be minimized to reduce the vibration and noise. However, the complaints is not decreased due to increased numbers of blasting per day so that the period of blasting works become long. This case study is related to urban apartment construction site. In order to overcome the weakness of general detonators which is required many blasting times to meet the day productivity, we have been applied deck-charge blasting method using electronic detonators and then we successfully increased the day productivity with much less blasting times. Hence, we had effectively achieved the declined neighbors'complaints and shortening construction period.

On the influence survey to building by the cable Tunnel blasting works. (통신구 터널발파작업으로 인한 진동.소음이 지상주택에 미치는 영향 평가)

  • Huh Ginn;Cheon Sang Back
    • Explosives and Blasting
    • /
    • v.11 no.1
    • /
    • pp.5-33
    • /
    • 1993
  • On the cable Tunnel works. Cautious blasting works were so effective and carried out. The vibration record were under 0.4cm / sec and blasting noise are under 75dB Which it was measured at the ground of Tailor House. As a result cautious blasting works under above allowable value, are not Influenced the structure of house and living. On the architechtural survey, there were some hair crack on the wall but this was not crack from recently blasting work.

  • PDF

A Study of a Pilot Test for a Blasting Performance Evaluation Using a Dry Hole Charged with ANFO (건공화 공법의 발파 성능 평가를 위한 현장 시험에 관한 연구)

  • Lee, Seung Hun;Chong, Song-Hun;Choi, Hyung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.197-208
    • /
    • 2022
  • The existence of shallow bedrock and the desire to use underground space necessitate the use of blasting methods. The standard blasting method under water after drilling is associated with certain technical difficulties, including reduced detonation power, the use of a fixed charge per delay, and decoupling. However, there is no blasting method to replace the existing blasting method. In this paper, a dry hole charged with ANFO blasting is assessed while employing a dry hole pumping system to remove water from the drill borehole. Additional standard blasting is also utilized to compare the blasting performances of the two methods. The least-squares linear regression method is adopted to analyze the blasting vibration velocity quantitatively using the measured vibration velocity for each blasting method and the vibration velocity model as a function of the scaled distance. The results show that the dry hole charged with ANFO blasting will lead to greater damping of the blasting vibration, more energy dissipation to crush the surrounding rock, and closer distances for the allowable velocity of the blasting vibration. Also, standard blasting shows much longer influencing distances and a wider range of the blasting pattern. The pilot test confirms the blasting efficiency of dry hole charged with ANFO blasting.

On the Rock Fragmentation with Plasma Blasting (플라즈마 장비의 발파공법)

  • 이경운
    • Explosives and Blasting
    • /
    • v.17 no.2
    • /
    • pp.19-35
    • /
    • 1999
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method controlling of flying rocks and ground vibrations, when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmental impacts. The fragmentation energy level is evaluated by numerical simulation using PFC for various drill hole patterns and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a 2-3 ㎥ granite boulder or 1.5m height bench face. Measurements are carried out to get the ground vibration level and propagation equation, so that control of the blasting operations can be performed more precisely and safely.

  • PDF

A Study on the Characteristics of MS Delay Blasting Considering Cooperating Charge (협동장약을 고려한 MS 지발 발파 특성 연구)

  • Kang Choo-Won;Kim Jong-In;Park Joung-Bong
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.11-18
    • /
    • 2005
  • The waveform at the blasting pattern using k13 delay electronic detonator depends on the interference of adjacent delay time according to the degree of distance and frequency. The degree of interference affects the size of blasting vibration at a measuring point. This study analyzed the cooperating change characteristics of MS delay blasting separately detonated at intervals of 40m and presented through frequency the delay time design method that is able to reduce the cooperation of blasting vibration at the MS delay blasting.

Rock of Fragmentation with Plasma Blasting Method (프라즈마장비의 발파공법)

  • 이경운
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method in controlling of flying rocks and ground vibrations when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmental impacts. The fragmentation energy level is evaluated by numerical simulation using PFC for various drill hole pattern and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a $2-3m^3$ granite boulder or 1.5m height bench face. Measurements are carried out to get the ground vibration level and propagation equation. So that the control of the blasting operations can be performed more precisely and safely.

  • PDF

Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete (발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 박근순
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF