• Title/Summary/Keyword: blast vibration

Search Result 237, Processing Time 0.023 seconds

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration (발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.10-16
    • /
    • 2016
  • Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.

A Case Study of Combining NDC Blasting Method and Wide Space Blasting Method to Increase Blast Efficiency (NDC 및 Wide Space 혼합공법을 통한 발파효율 개선 사례연구)

  • No, Sang-Lim;Noh, Seung-Hwan;Lee, Sang-Pil;Lee, Hoon-Yeon;Lee, Tai-Ro
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.387-393
    • /
    • 2006
  • This paper introduces the combination of two blasting methods applied to reduce blast-vibration and increase blast efficiency. NDC (New Deck Charge) blasting method using air deck effect with separation tube made of paper was effective to reduce blast-vibration, while blast efficiency was decreased a little in the bottom of a blasthole. Wide Space blasting method has an advantage to control the fragmentation and to increase blast efficiency over conventional blasting methods. In this study new blasting method combining NDC blasting method and Wide Space blasting method was applied to the field, it was confirmed to reduce blast-vibration and increase blast efficiency. It is expected to make useful blasting method to cover the public complaints and to shorten construction time by accumulating blasting data using new method with various conditions.

Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators (전자뇌관을 이용한 터널발파의 근거리 지반진동 특성)

  • Kim, Yong-Pyo;Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon;Kim, Hee-Do;Lee, Jun-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.76-86
    • /
    • 2013
  • In order to control tunnel blast vibration for adjacent facilities using electronic detonator, Understanding about the characteristics of near-field ground vibration is necessary. The purpose of this paper is to analyze effects of Cut-area and Extension-area vibration in relation to decision of tunnel blast vibration. These data were obtained at the top monitoring positions while ${\bigcirc}{\bigcirc}{\bigcirc}$ tunnel site of "Wonju~Gangneung double railroad section ${\bigcirc}{\bigcirc}$ construction" was passing under the existing road. Thus, tunnel blasting was conducted by tunnel electronic blasting system with 0.01% high delay-time accuracy. It can be possible that not only keeping maximum charge per delay-time but also preventing amplification of vibration which is occurred by delay-time scatter using common detonators. Additionally, V-Cut was changed into Burn-Cut. The results was presented that vibration level of extension-holes were higher than Cut-holes. Therefore, near-field ground vibration can be effectively minimized using electronic detonators in the Cut area. And also more effective way to reduce tunnel blast vibration is full-face blast using electronic detonators.

An Efficient Blast Design using Reliability Index (신뢰성지수를 이용한 효율적인 발파설계)

  • 박연수;박선준;강성후
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.821-831
    • /
    • 1998
  • The actual ground vibrations due to NATM and foundation blasting at Seoul(weathered rock), Pusan(weathered rock) and Youngkwang(quartz andesite) have been measured, and the data were analyzed using reliability index($\beta$) to determinate the vibration equations and the maximum charge weight for efficient blast. These were suggested with the division of ultimate limit state($\beta$=0), serviceability limit state($\beta$=1.28) and safety state($\beta$=3), respectively. The reliability index 0 mean 50% data line obtained by the least squares best-fit line. The reliability index 1.28 and 3 represent bounds below 90% and 99.9% of the data, respectively. In this study, reliability index $\beta$=1.28 with security and economy was suggested. The maximum charge weight equations for efficient blast were obtained in W=(Vc/384.90)1.5151.D3(Seoul), W=(Vc/579.82)1.4706.D3(Pusan). W=(Vc/1654.01)1.3456.D3(Youngkwang), and the blast vibration equatiions in V=385(SD)-1.98(Seoul), V=580(SD)-2.04(Pusan), V=1654(SD)-2.23(Youngkwang), respectively. From this study, inference and analysis methods of vibration equations using reliability theory were established.

  • PDF

A Case Study on Blasting Vibration 3D Modelling with Electronic-Delay System Detonator (전자발파시스템을 이용한 발파진동 3D 모델링 연구 사례)

  • Kim, Gab-Su;Yang, Ruilin;Kim, Yong-Gyun;Kang, Dae-Woo
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2014
  • This study is using electronic-delay system detonator which can input an accurate detonating delay, compare predicted blasting vibration level derived from vibration 3D modelling with real measured blasting vibrations, and then considered modelling results are able to apply blast design. It confirmed there are certain relations between modelling and real vibration data, so modelling prediction method also can be apply design various blast conditions and prediction equation of blast vibration.

A Comparative Study on the Characteristics of Vibration Propagation during Open-Pit Blasting using Electric and Electronic Detonators (전기 및 전자뇌관을 이용한 노천발파 시 진동전파 특성에 관한 비교 연구)

  • Lee, Ki-Keun;Lee, Chun-Sik;Hwang, Nam-Sun;Lee, Dong-Hee
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2019
  • Recently, Electronic Detonators have gradually increased their performance for various purposes such as vibration control and improved Fragmentation. This study analyzed the vibration estimation equations of electric and electronic detonator blast by comprehensive analysis of the vibration data collected during electric and electronic detonator blast waves at the comparison sites of urban areas, geology and soil conditions, stone quarries and mines in different areas of Korea from June 2017 to December 2018. It has been confirmed that electronic detonator blast can meet the criteria for allowing vibration even if maximum charge weight per delay is increased by 1.5 times compared to the electric detonator blast.

Investigation of blast-induced ground vibration effects on rural buildings

  • Oncu, Mehmet Emin;Yon, Burak;Akkoyun, Ozgur;Taskiran, Taha
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.545-560
    • /
    • 2015
  • In this paper, blast-induced vibration effects on buildings located in rural areas were investigated. Damages to reinforced concrete, adobe and masonry buildings were evaluated in Çatakk$\ddot{o}pr\ddot{u}$ and Susuz villages in Silvan district of Diyarbakir, Turkey. Blasting of stiff rocks to construct highway at vicinity of the villages damaged the buildings seriously. The most important reason of the damages is lack of engineering services and improper constructed buildings according to the current building design codes. Also, it is determined that, inappropriate blast method and soft soil class increased the damages to the buildings. The study focuses on four points: Blast effect on buildings, soil conditions in villages, building damages and evaluation of damage reasons according to the current Turkish Earthquake Code (TEC).

Ground Vibration in Tunnelling by Blasting and its Effect on Surface Structures (터널굴착이 지상구조물에 미치는 영향평가 및 발파지침설계)

  • 신희순;한공창;류창하;신중호;박연준;최영학
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.463-470
    • /
    • 2000
  • In tunnel excavation by blast beneath the surface structures in urban area, the characteristics of ground vibration induced by blast and its influence on surface structures are analyzed by the field test and the numerical analysis on dynamic behaviors of the structure. According to the field test on the propagating characteristics of blast vibration through the rock mass and the concrete foundation pile. the attenuation index of peak particle velocity with distance shows the range of 1.7∼2.0 for the rock mass and the range of 2.0∼2.3 for the concrete pile. This shows that the blast vibration reduces more rapidly in the concrete pile. It is known from the numerical analysis on dynamic behavior of the structure that the coefficient of response, velocity ratio of structure response to input wave, is different according to the story of the structure. It can be said from this research that the characteristics of the ground vibration and the dynamic behavior of the structure should be well evaluated and be considered as important factors for safe blasting design especially in underground excavation at shallow depth in urban area.

  • PDF

A Case Study on the Stability Assessment of Structures by Blast-induced Vibration (발파진동에 대한 구조물 안정성 평가 - 지하비축기지 건설 사례)

  • Lee, Chung-In;Choi, Yong-Kun;Jong, Yong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.479-484
    • /
    • 2005
  • The test blasts were carried out by detonating some single blastholes at two upper sites of the underground storage cavern the crude oil. One was performed at the entrance site of the construction tunnel and the other at the middle part of the underground storage cavern. Based on the blast-induced vibration measured by the test blasts, we suggested the propagation equations of blasting vibration that were capable of estimating the peak particle velocity. In addition, in order to assess the stability of the nearest ground storage tank, we did the frequency analysis and the response spectrum analysis with the particle velocity-time history and the particle acceleration-time history that were measured by the test blast carried out on the entrance site of the construction tunnel. In result, it was predicted that the displacement on the highest part of the tank shell was less than the allowable displacement.

  • PDF