• Title/Summary/Keyword: blast resistance

Search Result 531, Processing Time 0.031 seconds

A Medium-Maturing and Good Quality Japonica Rice Variety, "Cheongan" (벼 중생 고품질 신품종 "청안")

  • Yang, Sae-Jun;Kim, Yeon-Gyu;Choi, Im-Soo;Cho, Young-Chan;Hwang, Hung-Goo;Hong, Ha-Cheol;Kim, Myeong-Ki;Oh, Myung-Kyu;Shin, Young-Seop;Lee, Jeom-Ho;Choi, Yong-Hwan;Choi, In-Bea;Kang, Kyung-Ho;Yea, Jong-Doo;Lee, Jeong-Heui
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.649-653
    • /
    • 2009
  • "Cheongan" is a new japonica rice variety developed from a cross between SR15225-B-22-1-2-1 and Iksan431 in summer season, 1997 by National Institute of Crop Science, RDA. The line SR15225-B-22-1-2-1 has good canopy architecture and multi-disease and insect resistance, and Iksan431 has translucent milled rice and good eating-quality. Heading date of Cheongan is August 13 in central lowland and mid-mountainous areas. "Cheongan" having culm length of 84 cm shows relatively semi-erect pubescent leaf blade and rigid culm, tolerance to lodging with and good canopy architecture. This variety has 14 tillers per hill and 126 spikelets per panicle. It shows tolerance to heading delay and spikelet sterility comparable to Hwaseongbyeo when exposed to cold stress. Leaf senescence of Cheongan progresses slowly during the ripening stage and the viviparous germination ratio was 59 %, similar to that of Hwaseongbyo. "Cheongan" shows moderately resistance to blast disease, but susceptible to stripe virus and brown planthopper. The milled rice of "Cheongan" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows similar amylose content of 18.7%, gelatinization temperature, and similar palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.54 MT/ha at ordinary season culture in local adaptability test for three years. Especially, "Cheongan" has better milling properties of higher 98.4% and 73.9% in the percentage of head rice in milled rice and milling recovery of head rice, respectively, than those of Hwaseongbyeo. "Cheongan" could be adaptable to the central and mid-southern plain area, and mid-western coastal area of Korea.

A New Rice Cultivar, "Onnuri" with A Medium-Late Maturity, High Yielding, High Grain Quality and Multiple Disease Resistance (벼 중만생 다수 고품질 복합내병성 신품종 "온누리")

  • Kim, Ki Young;Shin, Mun Sik;Ko, Jae Kwon;Kim, Bo Kyeong;Ha, Ki Yong;Nam, Jeong Kwon;Ko, Jong Cheol;Baek, Man Gee;Kim, Young Doo;Choung, Jin Il;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Kwang, Huyn Jung;Shin, Seo Ho;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.324-327
    • /
    • 2008
  • 'Onnuri' is a japonica rice cultivar developed from the cross between 'Milyang 165' and HR14732-B-67-2-3 at Honam Agricultural Research Institute (HARI), NICS, RDA, in 2005. This cultivar has a short grain shape and about 121 days growth duration from transplanting to harvesting in Korean climate condition. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen from $K_1$ to $K_3$ and stripe virus, but susceptible to other major diseases and insect pests. The milled kernel of 'Onnuri' is translucent with non-glutinous endosperm. It has about 18.6% of amylose content and better palatability of cooked rice compared with 'Chucheongbyeo' cultivated in Kyunggi province. The milled rice yield of 'Onnuri' is about 5.94 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. 'Onnuri' would be adaptable to southern plain of Cheonan, middle-northern plain, and southern mid-mountainous of Korea.

A New Early Maturing Rice Cultivar "Junamjosaeng" with Multiple Disease Resistance and High Grain Quality Traits (고품질 복합내병성 조생종 벼 신품종 "주남조생")

  • Lee, Jong-Hee;Yeo, Un-Sang;Lee, Jeom-Sik;Kang, Jong-Rae;Kwak, Do-Yeon;Park, Dong Soo;Cho, Jun-Hyeon;Song, You-Chun;Park, No-Bong;Kim, Choon-Song;Yi, Gi-Hwan;Lim, Sang-Jong;Oh, Byeong-Geun;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Junamjosaeng is a new japonica rice cultivar developed in 2006 from a cross between Milyang165*3 and Koshihikari at the Department of Functional Crop Science, NICS, RDA. This cultivar is suitable for the double cropping system (i. e., before and after the cash crop). Heading date of Junamjosaeng is 6 days earlier than Keumobyeo under the late transplanting cultivation on July 10. It has a high grain fertility under cold conditions and low premature heading. One of the distinguishing characteristics of this variety is its resistance to major diseases like leaf blast, bacterial blight races ($K_1$, $K_2$, $K_3$) and rice stripe virus disease. However, it showed susceptibility to major insect pests. Milled rice kernels are translucent with non glutinous endosperm and have 6.7% protein and 19.8% amylose contents. Milling recovery of head rice is 75.7%. The palatability of cooked rice is better than Keumobyeo. The milled rice yield of Junamjosaeng in local adaptability tests after harvest of the cash crop was $4.43\;tons\;ha^{-1}$. This cultivar is suitable for planting in the plain paddy fields of Honam and Yeonnam regions in Korea.

A New High Yielding Rice Variety with Multi-Disease Resistance, 'Keunseom' (중생 복합내병충성 초다수성 벼 '큰섬')

  • Ha, Un-Goo;Song, You-Chun;Yeo, Un-Sang;Cho, Jun-Hyeon;Lee, Jong-Hee;Lee, Ji-Yoon;Kwak, Do-Yeon;Chang, Jae-Ki;Hwang, Hung-Goo;Kim, Young-Doo;Cho, Young-Ho;Yang, Sae-Jun;Oh, Byeong-Gen;Shin, Mun-Sik;Ku, Yeon-Chung;Kim, Ho-Yeong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.576-580
    • /
    • 2011
  • 'Keunseom', a new second generation Tongil-type rice variety (Oryza sativa L.), is a mid-maturing ecotype developed by the rice breeding team of Department of Functional Crop, NICS, RDA in 2006. This variety was originated from a cross between 'Dasanbyeo' and 'Namyeongbyeo' in 1996's summer season, which developed by pedigree breeding method. The pedigree of 'Keunseom' was YR18234-B-B-98-3-5-1, and it was designated 'Milyang202' in 2002. 'Keunseom' has tolerance to lodging, because it has short culm length as 77 cm. This variety is resistance to bacterial blight K1 race, rice stripe virus, rice dwarf virus, and leaf blast disease. Milled rice kernel of 'Keunseom' is a clean translucent with non-glutinous endosperm, and has good quality as it was clear in chalkness. The milled rice yield potential of 'Keunseom' was about 719 kg/10a at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to the mid and southern plain of Republic of Korea.

A Mid-Late Maturing, Multi-Disease Resistant and Good-Quality Rice Variety "Hwangkeumnuri" (벼 중만생 고품질 복합내병성 품종 "황금누리")

  • Kim, Ki Young;Shin, Mun Sik;Ko, Jae Kwon;Kim, Bo Kyeong;Ha, Ki Yong;Ko, Jong Cheol;Baek, Man Kee;Nam, Jeong Kwon;Kim, Young Doo;Choung, Jin Il;Noh, Gang Il;Kim, Woo Jae;Park, Hyun Su;Kang, Hyun Jung;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.188-191
    • /
    • 2008
  • 'Hwangkeumnuri' is a japonica rice variety developed and registered by the rice breeding team of Honam Agricultural Research Institute, NICS, RDA in 2006. This variety was derived from a cross between 'Milyang 165' (Junambyeo) with good quality and high yield and HR14732-B-67-2-3 with multi-disease resistance. This variety has about 125 days growth duration from transplanting to harvesting in west-southern coast, Honam and Youngnam plain of Korea. It is about 76 cm in culm length and tolerance to lodging. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen from $K_1$ to $K_3$ and stripe virus, but susceptible to other major diseases and insect pests. The milled rice of 'Hwangkeumnuri' exhibits translucent, relatively clear non-glutinous endosperm and midium short grain. It has similar amylose content of 18.9% and lower protein content of 6.2%, and good palatability of cooked rice compared with 'Nampyeongbyeo'. The milled rice yield performance of this variety is about 5.74 MT/ha in local adaptability test for three years. 'Hwangkeumnuri' would be adaptable to west-southern coast, Honam and Yeongnam plain of Korea.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Jinbo' (중생 고품질 내도복 내병성 벼 품종 '진보')

  • Kim, Jeong-Il;Park, No-Bong;Lee, Ji-Yoon;Park, Dong-Soo;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gi-Hwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • A new rice variety 'Jinbo' is a japonica rice (Oryza sativa L.) with good eating quality, lodging tolerance, and resistance to rice stripe virus (RSV) and bacterial blight disease (BB). It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2009. This variety was derived from a cross between 'Yeongdeog26' with good grain quality and wind tolerance and 'Koshihikari' with good eating quality in 1998 summer season. A promising line, YR21324-56-1-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog45' in 2005. After the local adaptability test was carried out at nine locations from 2006 to 2008, 'Yeongdeog45' was released as the name of 'Jinbo' in 2009. 'Jinbo' has short culm length as 74 cm and medium maturating growth duration. This variety is resistant to $K_1$, $K_2$, and $K_3$ races of bacterial blight and stripe virus and moderately resistant to leaf blast disease with durable resistance, and also it has tolerance to unfavorable environments such as cold and dried wind. 'Jinbo' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Jinbo' in milled rice is about 5.65 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to middle plain, mid-west costal area, east-south coastal area, and south mid-mountainous area.

Cloning of the β-Lactamase Gene from Bacillus sp. J105 and Analysis of Its Expression in E. colis Cells (Bacillus sp. J105 유래 β-lactamase 유전자의 cloning 및 E. coli 내에서의 발현 분석)

  • Kang, Won-Dae;Lim, Hak-Seo;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Cho, Kyeong-Soon;Kang, Byoung-Won;Seo, Kwon-Il;Choi, Yung-Hyun;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1592-1599
    • /
    • 2008
  • The $\beta$-lactamase gene was cloned into E. coli DH5$\alpha$ from Bacillus sp. J105 with strong resistance against $\beta$-lactam antibiotics. The chromosomal DNA was partially digested with Sau3AI and ligated to BamHI digested pLAFR3. $\beta$-Lactamase positive clones were obtained by using in vitro packaging kit. The pKL11-${\Delta}4.6$ with $\beta$-lactamase activity was obtained by subcloning of the recombinant plasmid ($\beta$-lac +). The 6.5 kb fragment in the subcloned plasmid was sequenced. The DNA fragment that contains the $\beta$-lactamase gene encodes 309 amino acids. The 0.17 kb upstream region was similar to those of B. thuringinesis and B. cereus with 97% identity. The deduced amino acids sequence was also similar to those of $\beta$-lactamase from B. thuringinesis and B. cereus with 97% and 94% identity, respectively. The phylogenetic tree also showed the relationships of the $\beta$-lactamase gene of Bacillus sp. J105 to genetically related that of other Bacillus strains. Analysis of expression pattern of the pKL11-${\Delta}4.6$ in E. coli, revealed that the secretion efficiency of $\beta$-lactamase was $4{\sim}5%$ and the molecular weight was as same as that of original $\beta$-lactamase (31 kDa) from Bacillus sp. J105.

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF

Genes of Wild Rice (Oryza grandiglumis) Induced by Wounding and Yeast Extract (상처와 효모추출물 처리조건에서 유발되는 야생벼 유전자 스크린)

  • Shin, Sang-Hyun;Im, Hyun-Hee;Lee, Jai-Heon;Kim, Doh-Hoon;Chung, Won-Bok;Kang, Kyung-Ho;Cho, Sung-Ki;Shin, Jeong-Sheop;Chung, Young-Soo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.650-656
    • /
    • 2004
  • Oryza grandiglumis (CCDD, 2n=48), one of the wild rice species, has been known to possess fungal-,bacterial-, and insect-resistance against sheath blight, rice blast, bacterial leaf blight and brown plant hopper (Nilaparvata lugens). To rapidly isolate differentially expressed genes responding to fungal and wounding stress, wounding and yeast extract were treated to O. grandiglumis for 24 hrs. Suppression subtractive hybridization (SSH) method was used to obtain differentially expressed genes from yeast extract and wounding treated plants. Seven hundreds and seventy six clones were obtained by subcloning PCR product, and colony array and screening were carried out using radio-isotope labeled cDNA probes prepared from the wounding and yeast extract treated plants. One hundred and fifteen colonies were confirmed as true positive ones. Average insert size of the clones were ranged from 400 bp to 700 bp and all the inserts were sequenced. To decide the identity of those clones, sequences were analyzed by sequence homology via GenBank database. The homology search result showed that 68 clones were matched to the genes with known function; 16 were related to primary metabolism, 5 to plant retrotransposons, 5 to defense related metallothionein-like genes. In addition to that, others were matched to various genes with known function in amino acid synthesis and processing, membrane transport, and signal transduction, so on. In northern blot analysis, induced expressions of ogwfi-161, ogwfi-646, ogwfi-663, and ogwfi-695 by wounding and yeast extract treatments were confirmed. The result indicates that SSH method is very efficient for rapid screening of differentially expressed genes.

An Early-Maturing and High Grain Quality, Intermediate Breeding Rice Variety 'Jungmo1001' (벼 조생 고품질 중간모본 '중모1001')

  • Won, Yong-Jae;Jeon, Yong-Hee;Jung, Kuk-Hyun;Shin, Young-Seop;Kim, Yeon-Gyu;Choi, Im-Soo;Han, Hee-Seog;Oh, Myung-Kyu;Lee, Sang-Bok;Lee, Jeong-Il;Cho, Young-Chan;Choi, Yong-Hwan;Roh, Jae-Hwan;Ahn, Eok-Keun;Yoon, Young-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.606-610
    • /
    • 2011
  • 'Jungmo1001' is an early maturing intermediate breeding line developed from a cross between Cheolweon52 and SR14694-57-4-2-1-3-2-2 by the rice breeding team of National Institute of Crop Science, Rural Development Administration (RDA) in 1994. 'Jungmo1001' has about 107 days duration from seeding to heading in mid-northern inland plain, southern alpine area and north-eastern coastal areas. It has about 73 cm in culm length with semi-erect plant type and good canopy architecture. This variety has 13 tillers per hill and 90 spikelets per panicle. Its 1,000 grain-weight of brown rice is 21.2 g which is less than 26.3 g of 'Odaebyeo'. Milled kernels are translucent with non-glutinous endosperm, low amylose content (18.1%) compared with 'Odaebyeo' palatability of cooked rice is very good. This variety shows strong resistance to cold treatment, lodging, premature heading and wilting. This variety shows moderately resistant to blast disease but susceptible to bacterial blight, stripe virus and insect pests. The milled rice yield performance of this variety is about 5.45 MT/ha by ordinary culture in local adaptability test for three years. This variety may be highly adaptable to the mid-northern inland plain, southern alpine area and north-eastern coastal areas of Korea.