• Title/Summary/Keyword: blast furnace slag power

Search Result 28, Processing Time 0.025 seconds

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.

An Experimental Study on Compressive Strength and the Chloride Content of Concrete with Substitution Ratio of Recycled Fine Aggregate and Limestone Power (순환잔골재 및 석회석 미분말 치환율에 따른 콘크리트 강도와 염화물량에 관한 실험적 연구)

  • Lee, Soo-Hyung;Kong, Tae-Woong;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.597-600
    • /
    • 2008
  • Correspond in chloride content increase by sea sand uses of bad quality using recycled fine aggregate in this research. together, examined basic properties of matter for activation of been using recycled fine aggregate use definitely. Also, super fundamental principles that is shortcoming that blast furnace slag differential speech has prevents problem of decline and change of countenance limestone power differential speech by purpose to contribute in early age strength as Filler role special quality examine. As experiment result, compressive strength at recycled fine aggregate 10%, limestone power 20% metathesis the highest compressive strength value appear, According to recycled fine aggregate metathesis rate increase, the chloride content reduced by 0.127 ㎏/m$^3$s(metathesis rate 0%), 0.119 ㎏/m$^3$s (metathesis rate 10%), 0.112 ㎏/m$^3$s (metathesis rate l20%), 0.097 ㎏/m$^3$s (metathesis rate 30%).

  • PDF

Properties of Ground Solidification Materials using Vietnam CFBC Fly Ash (베트남 CFBC 플라이애시를 사용한 지반고화재의 특성)

  • Kim, Keeseok;Lee, Jaewon;Lee, Dongwon;Yu, Jihyung;Hoang, Truong Xuan;Minh, Ha;Min, Kyongnam
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2018
  • According to Vietnam government establishes additional coal-fired power plants to secure generation capacity, emission of ashes is accelerating and processing them is urgent issue. This study targeted utilize fly ashes that occurred in circulating fluidized bed combusion (CFBC) power plant to use ground solidification materials. CFBC fly ashes are used to make solidification with ground granulated blast furnace slag (GGBFS), gypsum and cement. Then produced specimens by mixing with soft ground soil to confirm mixing effect of fly ash in solidification. As a result it was possible to find mixture design that is satisfied 3 MPa compressive strength in age 28 days and reduce weight loss rate over 50% in acid immersion test than plain specimens that using only ordinary portland cement.

Mechanical Properties of High Strength Concrete with High Volume Mineral Admixture (다량의 혼화재를 사용한 고강도 콘크리트의 역학적 특성)

  • Baek, Chul-Woo;Park, Cho-Bum;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.180-187
    • /
    • 2014
  • The purpose of this study is to evaluate on the mechanical properties of High Volume Mineral Admixture(HVMA) high strength concrete to reduce the amount use of Ordinary Potland Cement, to discover the optimized HVMA binder and to test HVMA concrete based on the change of W/B and curing temperature. The results were shown as follows: The HVMA binder using the mixture of combined heat power plant fly ash and anhydrous gypsum known as inorganic activators with the mixture of blast furnace slag and fly ash was optimized. The mixture of HVMA high strength concrete at 26% of W/B ratio had a good result on flow characteristic and mechanical properties. High strength HVMA concrete over 50MPa is possibly manufactured over curing temperature $20^{\circ}C$.

A Study on the Improvement of Early-age Compressive Strength of Smart BFS Powder Added Cement Mortar (스마트 고로슬래그 미분말을 첨가한 시멘트 모르타르의 초기 압축강도 향상에 관한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Kim, Jin Hyung;Lee, Kang Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2013
  • In this study, to improve the early-age compressive strength of mortar, the compressive strength tests of mortar mixed smart BFS powder added powder of rapid setting additives milled by processing, using functional grinding aid, the power-typed rapid setting cement clinker developed by sintering industrial waste and by-products with much CaO-$SiO_2-Al_2O_3$ to cement were performed. From the tests, the followings are found that (1) for BFS early-age strength improvement test (Series I): early-age strength improvement of BFS mixed rapid setting additive milled after adding functional grinding aid, when the clinker is milled, is superior and (2) for OPC early-age strength improvement test (Series II): case of additive mixed rapid setting powder typed activator milled after adding functional grinding aid to Clinker-C showed the higher compressive strength.

A Research on the Manufacture of Eco-Friendly Weed-Proof Mortar using Industrial Byproducts (산업부산물(産業副産物)을 혼입(混入)한 친환경성(親環境性) 방초(防草) 모르타르의 제조(製造)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Kim, Nam Wook;Ko, Young Zoo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2012
  • Removal work about weeds that grow naturally on road and industrial complex is attaining ordinary times but is suffering difficulty in weeding work by strong self-generation power. In the meantime, going side by side with these manual processing and weeding work through construction of weed-proof seat is attaining, but economic performance, limitation of application region and withdrawal processing problem are being blamed for shortcoming. The scope of this study is about the manufacture of weed-proof mortar using eco-friendly industrial byproducts characterized by an economic and simplicity for not limited to loss of function as a product recovered after treatment. After the carried out the various experiments and actual construction for the selection of mixing materials and derivation of appropriate mix, through the comparison and analysis of results, it was investigated the research results of weed-proof mortar for fundamental development.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.