• 제목/요약/키워드: blade design

검색결과 1,132건 처리시간 0.026초

피치제어형 풍력발전시스템의 속도제어 (Speed Control of a Wind Turbine System Based on Pitch Control)

  • 임종환;허종철
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정 (Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter)

  • 기영중;김덕관;신진욱
    • 항공우주시스템공학회지
    • /
    • 제13권6호
    • /
    • pp.52-59
    • /
    • 2019
  • 로터 블레이드는 허브를 통해 전달된 토크와 조종장치를 이용한 피치각 제어를 통해 헬리콥터 비행에 필요한 양력, 추력 및 기동력을 발생시킬 수 있는 핵심 구성품이며, 구조적인 안전성과 함께 공진의 위험성이 없도록 진동 특성을 고려하여 설계되어야 한다. 본 연구에서는 다목적 무인 헬리콥터(Multi-Purpose Utility Helicopter)에 적용하기 위한 주로터 블레이드의 구조 설계를 수행하였으며, 제작된 블레이드의 단면 강성 측정 시험을 수행하였다. 이후 측정된 강성 분포를 반영하여 로터 시스템의 진동특성에 대한 평가를 수행하였다. 로터 블레이드 내부는 스킨, 스파 및 토션박스로 구성되며, 탄소 및 유리 섬유 복합소재를 적용하였다. 블레이드 단면 강성 예측을 위해 Ksec2D 프로그램을 활용하였으며, 실험을 통해 측정된 값과 비교한 결과를 제시하였다. 로터 시스템의 회전으로 인한 고유진동수 변화 및 공진 위험 여부를 확인하기 위해 회전익 항공기의 통합 해석 프로그램인 CAMRADII를 활용하였다.

소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계 (Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test)

  • 기영중;박중용
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.159-166
    • /
    • 2018
  • 본 연구에서는 소형민수헬기(Light Civil Helicopter, LCH)의 풍동시험에 필요한 축소 로터 블레이드에 대해 내부 구조설계와 동특성 및 하중해석을 수행하였다. 축소로터 풍동시험은 로터 시스템의 공력성능과 소음 특성을 평가하기 위해 수행되므로, 실제 크기의 로터시스템과 동일한 공력 특성을 모사할 수 있도록 축소 블레이드 설계 시 마하 스케일(Mach-scale) 기법을 적용하였다. 마하 스케일 블레이드는 실물 블레이드의 끝단속도(blade tip speed)와 동일한 값을 유지할 수 있도록 로터의 회전속도를 증가시켜야 하며, 블레이드 중량, 단면강성 및 고유진동수 등은 특정한 축소계수(${\lambda}$, scaling factor)를 통해 조정된다. 블레이드 내부의 주요 구성품인 스킨, 스파, 토션박스 등을 설계하기 위해 탄소섬유와 유리섬유 계열의 복합소재를 적용하였으며, 국내에서 수급이 가능한 프리프레그(prepreg) 형태의 복합소재를 적용하였다. 내부구조 설계가 완료된 블레이드에 대해 단면강성을 평가하기 위해 KSec2D 프로그램을 사용하였으며, 회전익 항공기의 통합해석 프로그램인 CAMRADII를 이용하여 축소 블레이드의 하중 분포와 동역학적 특성을 검토하였다.

복합재 로터 블레이드의 구조 최적설계 (Structural Optimum Design of Composite Rotor Blade)

  • 박정진;이민우;배재성;이수용;김석우
    • 항공우주시스템공학회지
    • /
    • 제1권3호
    • /
    • pp.26-31
    • /
    • 2007
  • This paper addresses a method for structural optimum design of composite rotor blade. The basic model of a composite helicopter main rotor blade is designed and its parameters determining the structural/dynamic properties are studied. Through the investigation of flap/lag/torsional stiffness, the structural properties of the model are analyzed. In this study, helicopter rotor blades are analyzed by using VABS. The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the variational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two dimensional cross-sectional analysis and a one-dimensional nonlinear beam problem. This is accomplished by taking advantage of certain small parameters inherent to beam-like structures. In addition, the rotational stability of the blade is estimated by the frequency diagram from FE analysis(MSC.Patran/Nastran) to understand its vibrational property. From the result, design parameters to determine and optimize the properties of the model are presented.

  • PDF

대형급 고효율 풍력 발전 시스템 블레이드 구조 설계 및 해석 연구 (A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System)

  • 공창덕;김민웅;박현범
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.7-11
    • /
    • 2012
  • Recently, the renewable energy has been widely used as a wind energy and solar energy resource due to lack and environmental issues of the mostly used fossil fuel. In this situation, the interest in wind power has been risen as an important energy source. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling, fatigue life and vibration analysis were performed using the Finite Element Method.

풍력발전 시스템의 특수 블레이드 설계 및 시뮬레이션에 관한 연구 (Study about the Design of Special Blade and Simulation for Wind Generation system)

  • 윤정필;이기제;윤형상;윤석암;차인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.192-195
    • /
    • 2004
  • Into investment expense that wind generation system that is one of clean energy is less than existent energy in narrow shipfitter maximum effect to source of energy that have Eoteulsu evaluate. There is shortcoming that Blade structure of existent aerogenerator faces at problem of safety accident in overpopulated area and noise and have additional expense of supply of electric power equipment. In this paper, We wish to supplement problem that is such through design of special Blade structure that have noise reduction and stability. Wish to achieve design and simulation of blade to use CATIA for this, and analyze adaptedness of system.

  • PDF

단면형 로터리경운날의 경운 특성 (Tillage Characteristics of the Single-Edged Rotary Blade)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

관류익형송풍기의 공력해석 및 설계 (Aerodynamic Analysis and Design of Inline-Duct Fan)

  • 곽은민;김광용;서성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

중형 헬리콥터 로터 시스템 개념설계 연구 (A Study of the Conceptual Design of Medium Size Utility Helicopter Rotor System)

  • 김준모
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.33-41
    • /
    • 2005
  • This paper describes the conceptual design of medium size helicopter rotor system. Based on assumed design requirements, trade-off study for rotor configuration has been conducted in terms of rotor tip speed, disk loading, blade area, solidity, etc for estimated primary mission gross weight. For the main rotor, four-blade and five-blade rotors are studied with the conventional tail rotor. The performance analysis for baseline configuration is conducted using a helicopter performance analysis program. The analysis shows design results satisfy the design requirements.

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.