• Title/Summary/Keyword: blade design

Search Result 1,132, Processing Time 0.029 seconds

The Development of Boiler Furnace Pressure Control Algorithm and Distributed Control System for Coal-Fired Power Plant (석탄화력발전소 보일러 노내압력 제어알고리즘과 분산제어시스템의 개발)

  • Lim, Gun-Pyo;Hur, Kwang-Bum;Park, Doo-Yong;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.117-126
    • /
    • 2013
  • This paper is written for the development and application of boiler furnace pressure control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. The control algorithms were designed in the shape of cascade control for two parts of furnace pressure control and induced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

Development of Multi-body Data Conversion Program for Torque Converter Analysis (토크컨버터 해석을 위한 다물체 자료 변환 프로그램 개발)

  • Lee, Jae-Chul;Chun, Doo-Man;Ahn, Sung-Hoon;Yeo, Jun-Cheol;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.58-65
    • /
    • 2008
  • The finite element programs have been developed for structure, collision, flow, dynamics, heat transfer, acoustics, electromagnetism, MEMS (Micro Electro Mechanical Systems), and etc. These programs can be classified as either "package" program or "single purpose" program. Single purpose programs usually have convenient and powerful functions, but these programs have limited expandability to different fields of analysis. Therefore, the method to converter the analysis results of single purpose program to other programs is needed. In the research, multi-body data conversion methods of 1) finite element model and 2) solid model were created to convert fluid analysis result of CFD-ACE+ to ANSYS data structure. Automatic boundary condition algorithms were developed for blade, and finite element model was compared with solid model. It is expected that, by sealess data transfer, the Multi-body Data Conversion Program could reduce the development period of torque converters.

The Study on Performance Model of Open Rotor Engine for Next Generation Aircraft (차세대 항공기용 Open Rotor 엔진 성능 모델 연구)

  • Choi, Won;Kim, Ji-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.842-849
    • /
    • 2011
  • Open Rotor Engine is one of the several new technologies offering potential solution for the next generation aircraft. The coupling of ultra high bypass ratio and aerodynamically advanced fan blade design allow the open rotor engine to achieve and advantage in fuel consumption. The open rotor engine does have more thrust lapse than the general high bypass turbofan. The open rotor engine performance model was analyzed using a reference data based on the GE36 which was designed and tested data at which time a F404 turbojet was used as the core. The performance model of open rotor engine was verified by referred test data and was evaluated to be properly constructed, through the comparison of recent Next generation turboprop engine performance.

  • PDF

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Aerodynamic Characteristic Analysis of the Darrieus Turbine Using Double Multiple Streamtube Model (이중 다류관 모델을 이용한 Darrieus 터어빈의 공기역학적 특성 해석)

  • Kim, Keon-Hoon;Park, Kyung-Ho;Chung, Hun-Saeng
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.47-56
    • /
    • 1990
  • The aerodynamic performances of Darrieus wind turbine were studied through the wind tunnel model tests and its analytical aerodynamic streamtube model. Hence, analytical streamtube model which is based on momentum and blade element theory is considered and the formulated model was generalized in non-dimensional type to predict the aerodynamic characteristics of Darrieus wind turbine. The analytical model was justified through the wind tunnel model tests for several experimental conditions but in the limited rages. These satisfactory comparative studies between the wind tunnel tests and the analytical predictions can be utilized for the basic reliable design of Darrieus wind turbine.

  • PDF

RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

  • Paik, Kwang-Jun;Park, Hyung-Gil;Seo, Jongsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.502-512
    • /
    • 2013
  • Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

Control System Design of NREL 5MW Wind Turbine (NREL 5MW 풍력터빈의 제어시스템 설계)

  • Nam, Yoonsu;Im, Changhee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

Comparison of the Contact Characteristics for Sealing strips of the Tsunami Damper (쓰나미 댐퍼 시일의 접촉특성 비교)

  • Seo, Ji-Hwan;Kim, Byung-Tak;Chin, Do-Hun;Yoon, Moon-Chul;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A Tsunami damper, which is installed on the outer wall of a nuclear power plant, is usually used as a ventilation window of the machine room, but can serve as a device for preventing flooding of the machine room when large waves flow over the outer wall. The sealing strip, which is inserted between the casing and the blades, plays an important role in maintaining a watertight environment. In this study, in order to ensure an effective watertight performance of the tsunami damper, FE analysis is conducted to compare the contact characteristics of sealing strips with three different section shapes. In the analysis, the casing and the blade of Tsunami damper are assumed to be rigid bodies; the sealing strip is assumed to be a flexible body. The stress, the strain, and the contact pressure are investigated to examine the sealing performance of each model.

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF