• Title/Summary/Keyword: bladder phantom

Search Result 28, Processing Time 0.021 seconds

Development of Bladder Phantom and Image Evaluation of Lesion in the Vicinity according to Filling and Empty Bladder (방광 팬텀 제작을 통한 충만여부에 따른 방광 주변 병변에 대한 영상 평가)

  • Park, Chan-Rok;Kim, Jae-Il;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.24-27
    • /
    • 2016
  • Purpose In this study, we evaluated image quality of lesion in the vicinity according filling and empty bladder developing bladder phantom. Materials and Methods Bladder phantom was developed by modifying NEMA IEC body phantom. Air-balloon was described as bladder and 6 insert were set as lesion in the vicinity bladder according to distance. The images were evaluated in terms of % BV, comparison of SUV and peak count rate (Single, Random and True count). Results % BV was decreased far away from bladder. There were different for SUV about $7.8{\pm}3.8%$ between filling and empty bladder. True count rate was decreased about 38 %. Single and random count were increased about 44, 61%. Conclusion When the lesion is close to bladder, noise is increased. That's why prior to PET-CT scan, It is important to urinate. and It helps patient to get the accurate result.

  • PDF

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.

Evaluation of Renal Uptake Rate in 99mTc-DMSA Scan on Pediatrics (소아 99mTc-DMSA 검사에서 신장 섭취율의 평가)

  • Baek, Seungju;Lee, Hyoyeong;Gil, Sanghyeong;Jo, Kyoungnam
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.235-238
    • /
    • 2015
  • The aims of this study were to evaluate the difference of renal uptake rate in $^{99m}Tc-DMSA$ scan on pediatrics by including the bladder. Phantom and Clinical studies were performed. In the phantom study, we put $^{99m}TcO_4{^-}$ (300uCi, 11 MBq) in 3cups filled with distilled water at the rate 1:1:0, 1:1:0.5, 1:1:1, 1:1:2 and were placed Lt kidney, Rt kidney and bladder position on the table. To acquire the image, we used Symbia-E gamma camera from Siemens with preset count method(400,000 counts). In quantitative analysis, the counts of drawing ROIs on the phantom were analyzed. In clinical studies, we analyzed the 20 pediatrics who were examined by $^{99m}Tc-DMSA$ scan. At first, the images were acquired with both kidney and bladder. Secondly we acquired images after shielding the bladder. And the data were compared using a pared t-test by SPSS(ver.22.0). As a result of renal phantom's experiment, we compared with average of uptake rate(%), 1:1:0 was Lt 43.32%, Rt 45.97%, 1:1:0.5 was Lt 35.79%, Rt 36.89%, 1:1:1 was Lt 29.68%, Rt 31.45% and 1:1:2 was Lt 22.89%, Rt 24.32%. There was no correlation between the zoom and uptake rate. The results of patient were that excluded bladder was $29.83{\pm}8.81%$(Lt), $24.29{\pm}6.66%$(Rt) and included bladder was $26.65{\pm}8.03%$(Lt, $21.78{\pm}6.24%$(Rt). This is deemed statistically significant (p<0.05). Renal uptake rate was undervalued because the counts of bladder were included in the total counts.

A New Algorithm to Estimate Urine Volume from 3D Ultrasound Bladder Images (3D 초음파 영상에서 방광 내 잔뇨량 추정을 위한 새로운 알고리즘)

  • Cho, Tae Sik;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • For the patients with bladder dysfunction, measurement of urine volume inside the bladder is very critical to avoid bladder failure. In measuring urine volume inside a bladder, low-resolution 3D ultrasound images are widely used. However, urine volume estimation from 3D ultrasound images is prone to big errors and inconsistency because of low spatial resolution and low signal-to-noise ratio of ultrasound images. We developed a new robust volume estimation algorithm which is not computationally expensive. We tested the algorithm on a lab-built ultrasound bladder phantom and volunteers. The average error rate of the human bladder volume estimation was 5.9% which was better than the commercial machine.

A Study on the Accuracy of Measurement of Residual Urine Amount depending on the Bladder form using Ultrasonic (초음파를 이용한 Bladder형태에 따른 잔뇨량 측정의 정확도 연구)

  • Kim, Y.M.;Park, T.H.;Kim, J.H.;Kim, S.J.;Hoon, J.D.;Heo, J.Y.;Han, D.G.
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • This study is to increase the accuracy of the diagnosis of benign prostatic hyperplasia by presenting a method that can accurately measure the residual urine amount of the bladder by using an ultrasound image. Agar powder, Propanol and distilled water were used as materials for making a phantom. In order to measure the volume, a $10m{\ell}$ cylinder, syringe and beaker were used. The image was obtained by scanning phantoms produced into six shapes. Each constant value was obtained by using the expression designed to measure the residual urine amount of the bladder and was compared and analyzed. The measuring method of Bladder volume was presented and a constant value for each shape was obtained and five observers measured it five times. According to the results of clinical application, the errors of Ellipse-beanbag, Shield-shield were 11.0%, 18.2%, respectively. Constant values depending on the shape of each phantom were presented in order to accurately measure the volume of the bladder in measuring the amount of residual urine for the diagnosis of benign prostatic hyperplasia. The accuracy of the volume using this was verified statistically(p > 0.05). Therefore, it is considered to be useful in diagnosing benign prostatic hyperplasia by using the ultrasound imaging measuring method presented.

  • PDF

Effectiveness of a Custom-made Multi Purpose Brachytherapy Phantom (자체 제작한 근접방사선치료용 다목적 팬텀의 유용성 평가)

  • Jang, In-Gi;Lee, Jin-Joung;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • Purpose: To measure the dose for dose optimization at the reference point (A, B) and the critical organ with multi Purpose brachytherapy phantom (MPBP). For this wort the MPBP was custom made, and designed to reconstruct the treatment applicator using multi function applicator (MFA) in the same way as the treatment of patient. Materials and Methods: Dose measurements were made at the reference points (A, B) and the bladder with thermoluminescence dosimeter (TLD) for four patients with tandem and ovoid of uterine cervix cancer using the phantom. In Phantom, Total 20 times of the measurements were made with 5 times a patient. Results: The results of TLD measurements in MPBP phantom showed the relative error ranging from -3.2% to 3.8% at A point, and -1.4% to 4% at B point and 1.3% to 7.15% at the bladder of reference point. Conclusion: The reproducibility of dose measurement under the same condition as the treatment could be achieved using the custom-made MFA in phantom and the dose at the reference point (A, B) and bladder could be analyzed accurately. The measured dose acquired in MPBP can apply for the dose optimization.

  • PDF

The Usability Evaluation of Application that is Developed the Dynamic Kidney Phantom System in Nuclear Medicine

  • Kim, Jae-Hyun;Lee, Juyoung;Park, Hoon-Hee
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.15-24
    • /
    • 2014
  • Currently commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using 99mTc-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

  • PDF

An Experimental Study on the Effect of Combined X-ray and Microwave Hyperthermia on the Rectum and Urinary Bladder of Rats (흰쥐의 직장과 방광에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.115-128
    • /
    • 1986
  • Hyperthermia can enhance the radiation effect as a synergistic reaction in combined X-ray irradiation and hyperthermia; hyperthermia sensitize radioresistant S-phase cells and inhibit cellular recovery from sublethal damage. We fabricated 100 watts, 2450 MHz microwave applicator for hyperthermia and planned the method and condition of heating and measured the temperature by using Agar phantom as a preliminary test. For biological examination, 102 rats were divided into 4 groups as hyperthermia, X-ray irradiation (6Gy-15Gy), combined X-ray and hyperthermia, and normal control groups. Microscopic examination of the rectum and bladder was done and the results were as followings: 1. The microwave generator with 100 watts, 2450MHz magnetron could be heating up to $40^{\circ}{\sim}50^{\circ}C$ for one hour in living tissue. 2. The thermal distribution in tissue equivalent phantom with microwave can be maintained at $40^{\circ}{\sim}44^{\circ}C$ in area of 3cm in depth and 2-10cm in diameter. 3. In Hyperthermia alone group, there was submucosal edema of the rectum but no histologic change in the urinary bladder was seen. 4. The minimal necrosis of the mucosa was appeared in the rectum and bladder after 15 days of 6 Gy and 8 Gy irradiation respectively. The minimal necrosis of the muscle layer of rectum and bladder was appeared after 15 days of 8Gy and 60days of 10Gy irradiation respectively. 5. In combined group of radiation and hyperthermia, thermal enhancement ratio (calculated at necrosis of mucosa and muscle layer) of rectum and bladder was 1.0, and it suggest that there is no change of tolerance dose of normal rectum and bladder.

  • PDF

Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy (자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가)

  • Lee, Yun-Jong;Nho, Young-Chang;Lee, Jai-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.387-391
    • /
    • 2006
  • Computational and experimental dosimetry of Henschke applicator with respect to high dose rate brachytherapy using the MIRD phantom and a remote control afterloader were performed. A comparison of computational dosimetry was made between the simulated Monte Carlo dosimetry and GAMMADOT brachytherapy Planning system's dosimetry. Dose measurements was performed using ion chamber in a water phantom. Dose rates are calculated using Monte Carlo code MCNP4B and the GAMMADOT. Thecomputational models include the detailed geometry of Ir-192 source, tandem tube, and shielded ovoids for accurate estimation. And transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations. Point doses at ICRU bladder/rectal pointswhich have been recommened by ICRU 38 was assessed. Calculated and measured dose distribution data agreed within 4% each other. The shielding effect of ovoids leads to 19% and 20% dose reduction at bladder surface and rectal points.

A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient (3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰)

  • Seo, Jung Nam;Na, Jong Eok;Bae, Sun Myung;Jung, Dong Min;Yoon, In Ha;Bae, Jae Bum;Kwack, Jung Won;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value. Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET. Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

  • PDF