• Title/Summary/Keyword: bladder cell

Search Result 224, Processing Time 0.142 seconds

The Effect of overcoming the TRAIL resistance through bufalin in EJ human bladder cancer cell (EJ 인간 방광암 세포에서 bufalin 의 TRAIL 저항성 극복 효과)

  • Hong, Su Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • Objectives : Bufalin is one of the bioactive component of 'Sum Su (蟾酥)', which is obtained from the skin and parotid venom gland of toad. Bufalin has been known to possess the inhibitory effects on cell proliferation and inducing apoptosis in various cancer cells. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has concerned, because it can selectively induce apoptotic cell death in many types of malignant cells, while it is relatively non-toxic to normal cells. Here, we investigated whether bufalin can trigger TRAIL-induced apoptotic cell death in EJ human bladder cancer cells. Methods : Effects on the cell viability and apoptotic activity were quantified using MTT assay and flow cytometry analysis, respectively. To investigate the morphological change of nucleus, DAPI staining was performed. Protein expressions were measured by immunoblotting. Results : A combined treatment with bufalin (10 nM) and TRAIL (50 ng/ml) significantly promoted TRAIL-mediated growth inhibition and apoptosis in EJ cells. The apoptotic effects were associated with the up-regulation of death receptor proteins, and the down-regulation of cFLIP and XIAP. Moreover, our data showed that bufalin and TRAIL combination activated caspases and subsequently increased degradation of poly(ADP-ribose) polymerase. Conclusions : Taken altogether, the nontoxic doses of bufalin sensitized TRAIL-mediated apoptosis in EJ cells. Therefore, bufalin might be an effective therapeutic strategy for the safe treatment of TRAIL-resistant bladder cancers.

Transepithelial transport and dynamic changes on apical membrane area of turtle bladder (Turtle Bladder 정단세포막(丁端細胞膜)의 역동적(力動的) 변화와 상피수송(上皮輸送)에 관하여)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 1993
  • The present study was carried out to analyze the evidence of membrane recycling, and the regulation of cellular transport by dynamic changes in apical membrane area that functionally interacts with the number of cytoplasmic vesicles. Under scanning electron micrographs, turtle bladder mucosa contain three main type of cells; granular cells and carbonic anhydrase (CA)-rich cells, deviding into a and b type of epithelial cell. The granular cell is the majority cell type of the mucosa comprising 80% of the total cell number. The remaining 20% of the cells are characteristically rich in carbonic anhydrase. Uptake of HRP was detected in the most vacuoles or tubulovesicles in both type of CA-rich cells in the turtle bladder, indicating that the part of plasma membrane was internalized in the apical cytoplasmic vacuoles. It seems quite likely that CA-rich cells possess intracellular vesicles carrying proton pumps which are recycling back to the apical plasma membrane. In turtle bladder, the granular cells actively secrete large quantities of mucin and other proteins by an exocytotic mechanism in an apparently constitutive fashion. The possibility that bladder epithelial cells secrete mucin via a regulated secretory pathway has not been rigorously examined and much is still to be determined about these issues from this cell type.

  • PDF

Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line

  • Wongpaiboonwattana, Wikrom;Tosukhowong, Piyaratana;Dissayabutra, Thasinas;Mutirangura, Apiwat;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3773-3778
    • /
    • 2013
  • Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with $H_2O_2$ for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in $H_2O_2$-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to $H_2O_2$. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

Integrin-linked Kinase Functions as a Tumor Promoter in Bladder Transitional Cell Carcinoma

  • Wang, De-Lin;Lan, Jian-Hua;Chen, Liang;Huang, Biao;Li, Zeng;Zhao, Xiu-Min;Ma, Qiang;Sheng, Xia;Li, Wen-Bin;Tang, Wei-Xue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2799-2806
    • /
    • 2012
  • The aim of this study was to elucidate the role of the integrin-linked kinase (ILK) gene in development of human bladder transitional cell carcinoma (BTCC). Expression of ILK protein and ILK mRNA in 56 cases of human BTCC tissue and in 30 cases of adjacent normal bladder tissue was detected by immunohistochemistry S-P and reverse transcription polymerase chain reaction (RT-PCR), respectively. Four specific miRNA RNAi vectors targeting human ILK were synthesized and transfected into BIU-87 cells by liposome to obtain stable expression cell strains. The influence of ILK on proliferation of BTCC was detected by MTT, FCM on athymic mouse tumorigenesis. The positive rate of ILK protein in BTCC tissue (53.6%) was much higher than adjacent normal bladder tissue (10.0%) (p<0.05). Similarly, expression of ILK mRNA in BTCC tissue ($0.540{\pm}0.083$) was significantly higher than in adjacent normal bladder tissue ($0.492{\pm}0.070$) (p<0.05). MTT showed that the proliferation ability of miRNA-ILK transfected group was clearly decreased (p<0.05), the cell cycle being arrested in G0/G1-S, an tumorigenesis in vivo was also significantly reduced (p<0.05). ILK gene transcription and protein expression may be involved in the development of BTCC, so that ILK might be the new marker for early diagnosis and the new target for gene treatment.

Novel artesunate-metformin conjugate inhibits bladder cancer cell growth associated with Clusterin/SREBP1/FASN signaling pathway

  • Peiyu Lin;Xiyue Yang;Linghui Wang;Xin Zou;Lingli Mu;Cangcang Xu;Xiaoping Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

Bcl-2 Overexpression Inhibits Generation of Intracellular Reactive Oxygen Species and Blocks Adriamycin-induced Apoptosis in Bladder Cancer Cells

  • Kong, Chui-Ze;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.895-901
    • /
    • 2013
  • Resistance to induction of apoptosis is a major obstacle for bladder cancer treatment. Bcl-2 is thought to be involved in anti-apoptotic signaling. In this study, we investigated the effect of Bcl-2 overexpression on apoptotic resistance and intracellular reactive oxygen species (ROS) generation in bladder cancer cells. A stable Bcl-2 overexpression cell line, BIU87-Bcl-2, was constructed from human bladder cancer cell line BIU87 by transfecting recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. The sensitivity of transfected cells to adriamycin (ADR) was assessed by MTT assay. Apoptosis was examined by flow cytometry and acridine orange fluorescence staining. Intracellular ROS was determined using flow cytometry, and the activities of superoxide dismutase (SOD) and catalase (CAT) were also investigated by the xanthinoxidase and visible radiation methods using SOD and CAT detection kits. The susceptibility of BIU87-Bcl-2 cells to ADR treatment was significantly decreased as compared with control BIU87 cells. Enhanced expression of Bcl-2 inhibited intracellular ROS generation following ADR treatment. Moreover, the suppression of SOD and CAT activity induced by ADR treatment was blocked in the BIU87-Bcl-2 case but not in their parental cells. The overexpression of Bcl-2 renders human bladder cancer cells resistant to ADR-induced apoptosis and ROS might act as an important secondary messenger in this process.

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

MicroRNA-16 Inhibits Bladder Cancer Proliferation by Targeting Cyclin D1

  • Jiang, Qi-Quan;Liu, Bin;Yuan, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4127-4130
    • /
    • 2013
  • MicroRNA-16 (miR-16) has been demonstrated to regulate proliferation and apoptosis in many types of cancers, but its biological function in bladder cancer remains unknown. Here, we found expression of miR-16 to be downregulated in bladder cancer in comparison with the adjacent normal tissues. Enforced expression of miR-16 was able to inhibit cell proliferation in TCHu-1 cells, in line with results for miR-16 antisense oligonucleotides (antisense miR-16). At the molecular level, our results further revealed that cyclin D1 expression was negatively regulated by miR-16. Therefore, the data reported here demonstrate that miR-16 is an important regulator in bladder cancer, which will contribute to better understanding of important mis-regulated miRNAs.

Ultrasonographic Findings of Transitional Cell Carcinoma in a Dog (개에서 방광내 이행세포암종의 초음파학적 진단)

  • 엄기동;오태호;장광호;이영원;장동우;이기창;윤정희
    • Journal of Veterinary Clinics
    • /
    • v.19 no.2
    • /
    • pp.268-271
    • /
    • 2002
  • Transitional cell carcinoma(TCC) was identified by cytological and ultrasonographic findings in an 11-year-old, intact female Yorkshire terrier with intermittent hematuria for three years. In color-doppler ultrasound images there was marked irregular wall thickness of the bladder surface and well-defined hyperechoic focal lesions within the mass. Active vascular response was observed in the surroundings of hyperechoic lesions.