• 제목/요약/키워드: black ice

검색결과 54건 처리시간 0.025초

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제11권3호
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델 (Black Ice Formation Prediction Model Based on Public Data in Land, Infrastructure and Transport Domain)

  • 나정호;윤성호;오효정
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.257-262
    • /
    • 2021
  • 매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축하였다. 수집된 요인들의 상관관계를 분석하여 블랙아이스 예측에 유효한 영향을 주는 21개 요인을 선별, 다양한 학습모델을 조합하는 방법을 통해 블랙아이스 발생 예측 모델을 구현하였다. 이를 통해 개발된 예측 모델은 최종적으로 노선별 블랙아이스 위험지수 도출에 사용되어 블랙아이스 발생 경고 서비스를 위한 사전 연구로 활용될 것이다.

단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계 (Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor)

  • 김성태;최원혁;박제홍;홍석민;임영근
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.865-870
    • /
    • 2023
  • 본 논문은 LiDAR (light detection and ranging) 센서를 활용하여 블랙아이스를 검출하는 새로운 방법을 제안합니다. 센서는 작고 비용이 저렴하면서도 높은 정확성을 가진 거리 측정 센서로 온도와 경사각을 다르게 하여 아스팔트와 블랙아이스의 각도를 구별하는 데 사용됩니다. 이 센서의 거리 측정 오차율은 대략 ±1 cm로 블랙아이스와 아스팔트을 구별하는 데에는 일부 오차가 발생할 수 있습니다. 본 논문에서는 정확성을 높이기 위한 추가적인 연구와 개선이 필요함을 지적하며 이를 통해 더욱 정확한 블랙아이스 검출 방법을 제안합니다.

도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정 (Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle)

  • 박문수;강민수;김상헌;정현채;장성빈;유동길;류성현
    • 대기
    • /
    • 제31권5호
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

MobileNetV2 기반의 개선된 Lightweight 모델을 이용한 열화도로 영상에서의 블랙 아이스 인식 (A Black Ice Recognition in Infrared Road Images Using Improved Lightweight Model Based on MobileNetV2)

  • 이옥걸;강선경
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1835-1845
    • /
    • 2021
  • 본 논문에서는 블랙 아이스를 정확하게 인식하고 도로 노면 정보를 운전자에게 미리 알려줘서 속도를 제어하고 예방 조치를 취할 수 있도록 하기 위해 열화 도로 영상을 기반으로 블랙 아이스 검출하기 위해 lightweight 네트워크를 제안한다. 전이학습을 이용하여 블랙 아이스 인식 실험을 하였고, 블랙 아이스 인식의 정확도 향상을 위해 MobileNetV2 기반의 개선된 lightweight 네트워크를 개발하였다. 계산량을 줄이기 위해 Linear Bottleneck 및 Inverted Residuals를 활용하여 4개의 Bottleneck 그룹을 사용하고 모델의 인식률 향상을 위해 각 Bottleneck 그룹에 3×3 컨볼루션 레이어를 연결하여 지역적 특징 추출을 강화하고 특징 맵의 수를 늘렸다. 마지막으로 구축된 블랙 아이스 데이터 세트 대상으로 블랙 아이스 인식 실험을 진행하였으며, 제안된 모델은 블랙 아이스에 대해 99.07%의 정확한 인식률을 나타내었다.

열화상카메라를 이용한 블랙아이스 특성 연구 (Characteristics of Black Ice Using Thermal Imaging Camera)

  • 김승준;윤원섭;김연규
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.873-882
    • /
    • 2021
  • In this study, a study was conducted to develop a system for predicting/responding to black ice occurring on roads in winter. Tests conditions were studied by making models of cement concrete pavement and asphalt concrete pavement. In order to freeze water on the manufactured model package, an tests was conducted at a temperature below zero using a freezer, and the freezing process was photographed using a thermal imaging camera. Black ice is generated when water is present on the road surface and the temperature is below freezing or the road surface temperature is below the dew point temperature. Under sub-zero conditions, the pavement, water, and ice were classified with a thermal imaging camera. As a result of the tests, it was possible to distinguish with a thermal imaging camera at a temperature below freezing in the same freezer due to the difference in the emissivity of the packaging, water, and ice. In the process of changing from water to ice during the tests, it was analyzed that ice and water were clearly distinguished by the thermal imaging camera due to the difference in emissivity and reflectance, so black ice could be predicted using the thermal imaging camera.

Preliminary Study on Black-Ice Detection Using GPS Ground Reflection Signals

  • Young-Joo Kwon;Hyun-Ju Ban;Sumin Ryu;Suna Jo;Han-Sol Ryu;Yerin Kim;Yun-Jeong Choi;Sungwook Hong
    • 한국지구과학회지
    • /
    • 제45권4호
    • /
    • pp.318-326
    • /
    • 2024
  • Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than -0.1 for elevation angles between 45° and 55°. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.

컬러 이미지 분석을 통한 블랙 아이스 검출 방법 연구 (Study of Black Ice Detection Method through Color Image Analysis)

  • 박필원;한성수
    • Journal of Platform Technology
    • /
    • 제9권4호
    • /
    • pp.90-96
    • /
    • 2021
  • 현재 개발중인 그리고 운행중인 대부분의 자동차에는 다양한 IoT 센서들이 탑재되어 있지만, 자동차 사고를 일으키는 요인 중 몇몇 요인들은 상대적으로 탐지하기 힘들다. 이러한 요소 중 대표적인 위험 요인 중 하나가 블랙 아이스이다. 블랙 아이스는 블랙 아이스가 깔린 부분을 지나가는 모든 차량에 영향을 줄 수 있어 대형 사고를 유발할 가능성이 가장 높은 요인 중 하나이다. 따라서 대형 사고를 막기 위해 블랙 아이스 검출기법은 꼭 필요하다. 이를 위해 몇몇 연구가 과거 진행되었으나 몇몇 부분에서 현실적이지 않는 요소들이 반영된 경우가 있어, 이를 보충하기 위한 연구가 필요하다. 본 논문에서는 CNN 기법으로 컬러 이미지를 분석하여 블랙 아이스를 탐지하고자 하였으며, 일정 수준의 블랙 아이스 탐지에 성공하였다. 다만 기존 연구 와 차이가 있어 그 이유를 분석하였다.

반복전기공급에 따른 발열모르타르의 발열 특성 (Heat generation characteristics of the heating mortar according to repeated electricity supply)

  • 김영민;임창민;권현우;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.170-171
    • /
    • 2022
  • In recent years, due to the occurrence of traffic accidents caused by black ice in winter, the number of personal injuries is increasing rapidly. Black ice is a phenomenon that occurs like a thin layer of ice on the road surface. Accordingly, many developments of heat-generating concrete are being developed to remove ice by increasing the temperature by supplying constant electricity to places where black ice is likely to occur. These heating elements are being developed by mixing a conductive material represented by carbon nanotubes with concrete. However, research up to now has been focused on efficient temperature rise and derivation of the optimum mixing ratio, and the evaluation of maintaining heat generation performance during continuous repetition is insufficient. Therefore, in this study, a heating test specimen was manufactured and 50V power was repeatedly supplied to evaluate the heating characteristics.

  • PDF