• Title/Summary/Keyword: black concrete

Search Result 84, Processing Time 0.023 seconds

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Assessment of 3D earthquake response of the Arhavi Highway Tunnel considering soil-structure interaction

  • Sevim, Baris
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • This paper describes earthquake response of the Arhavi Highway Tunnel its geometrical properties, 3D finite element model and the linear time history analyses under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, lineartime history analyses of the tunnel are performed applying north-south, east-west and up accelerations components of 1992 Erzincan, Turkey ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because of needed too much memory for the analyses, the first 10 second of the ground motions, which is the most effective duration, is taken into account in calculations. The results obtained 3D finite element model are presented. In addition, the displacement and stress results are observed to be allowable level of the concrete material during the earthquakes.

Development of a user-friendly and transparent non-linear analysis program for RC walls

  • Menegon, Scott J.;Wilson, John L.;Lam, Nelson T.K.;Gad, Emad F.
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.327-341
    • /
    • 2020
  • Advanced forms of structural design (e.g., displacement-based methods) require knowledge of the non-linear force-displacement behavior of both the overall building and individual lateral load resisting elements, i.e., walls or building cores. Similarly, understanding the non-linear behaviour of the elements in a structure can also allow for a less conservative structural response to be calculated by better understanding the cracked (i.e., effective) properties of the various RC elements. Calculating the non-linear response of an RC section typically involves using 'black box' analysis packages, wherein the user may not be in complete control nor be aware of all the intricate settings and/or decisions behind the scenes. This paper introduces a user-friendly and transparent analysis program for predicting the back-bone force displacement behavior of slender (i.e., flexure controlled) RC walls, building cores or columns. The program has been validated and benchmarked theoretically against both commonly available and widely used analysis packages and experimentally against a database of 16 large-scale RC wall test specimens. The program, which is called WHAM, is written using Microsoft Excel spreadsheets to promote transparency and allow users to further develop or modify to suit individual requirements. The program is available free-of-charge and is intended to be used as an educational tool for structural designers, researchers or students.

Evaluation of Electromagnetic Pulse Shielding Effectiveness and Bonding Performance of Inorganic Paint based on Carbon Material (탄소재료 기반 무기계 도료의 전자파 차폐성능 및 부착성능 평가)

  • Jang, Kyong-Pil;Kim, Sang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.801-807
    • /
    • 2021
  • In various industrial fields and infrastructure based on electronic components, such as communication equipment, transportation, computer networks, and military equipment, the need for electromagnetic pulse shielding has increased. Two methods for applying electromagnetic pulse shielding are effective. The first is construction using shielding materials, such as shielding concrete, shielding doors, and shielding windows. The other is coating shielding paints on non-shielding structures. Electromagnetic pulse shielding paints are made using conductive materials, such as carbon nanotubes, graphite, carbon black, and carbon fiber. In this paint, electromagnetic pulse shielding performance is added to the commonly used water-based paint. In this study, the shielding effectiveness and bonding performance of paints using conductive graphite and carbon black as shielding materials were evaluated to develop electromagnetic pulse shielding inorganic paints. The shielding effectiveness and bonding performance were evaluated by applying six mixtures composed of different kinds and amounts of shielding material. The mixture of conductive graphite and carbon black at a weight ratio of 1:0.2 was the most effective in shielding as 33.6 dB. Furthermore, the mixture produced using conductive graphite only showed the highest bonding performance of 1.06 MPa.

Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT (폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • The purpose of this study was to develop self-heating concrete by utilizing the conduction resistance of concrete in order to reduce the risk of occurrence of black ice in the concrete pavement in winter and to prevent damage caused by freez-thawing effect. For this purpose, it was attempted to evaluate the strength and temperature exothermic characteristics using powder and liquid waste CNTs and a waste cathode agent as a conduction promotion. It was analyzed that liquid waste CNT had an effective dispersion degree in the mortar and a small decrease in strength occurred. In addition, DC 24 V was supplied by applying steel mesh, copper foil and copper wire to the mortar as electrodes, and the temperature change characteristics according to the mixing ratio of spent CNTs, anodes and carbon fibers were evaluated. In addition, by evaluating the temperature characteristics according to the electrode spacing from the selected optimal mixture, it was confirmed that it had sufficient heating characteristics up to an electrode spacing of 100 mm up to AC 50 V.

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF

Aesthetic Value of Korean National Parks' Landscape: Its Appreciation and Protection Strategies (국립공원 경관 가치의 증진방안)

  • Park, Kyeong
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.369-382
    • /
    • 2003
  • Natural resources managers have considered the landscape without detailed consideration of aesthetic values of the landscape and geomorphological significance of unique landforms. Since EIA system was introduced in 1981, values associated with landscape protection have been neglected at best compared with those values traditionally attributed to environmental protection, including clean air, water quality and species protection. Black top highways are being built without consideration of harmful effects to the sea cliffs. Sea walls and tetrapod are being installed to protect the coastal towns and fish markets for tourist. However, beach itself are experiencing accelerated erosion due to the shortage of proper coastal engineering expertise. Hotels and condominiums are under construction on a massive scale around the national parks, which substitute the scenic ridges with concrete profiles. To protect the scenic beauty of national parks, their design and construction material should be more harmonious with the surroundings. Therefore, visual impact assessment should be applied both within the national park boundary and beyond to enhance the aesthetic values of national parks.

Study on the Development of Black Ice Reduction Concrete Using Phase Change Material (상변환재료를 활용한 블랙아이스 저감 콘크리트 개발에 관한 연구)

  • Lee, Jae-Min;Yang, Hee Hun;Jeong, Seoung Hyun;Kim, Seong Kyum;Jang, Il Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.437-438
    • /
    • 2022
  • 본 논문에서는 상변환 재료를 이용하여 동절기에 발생하는 도로포장의 블랙아이스 현상을 저감시키기 위한 기초연구를 진행하였다. 콘크리트 내에서 누출을 막기 위해 마이크로 캡슐화된 상변환 재료를 이용했으며 초기 개발단계인 만큼 페이스트 단계에서 실험을 진행 하였다. 실험은 초기 수화거동에서의 수화열 발생 경향을 분석하기 위해서 미소수화열 측정 실험과 반복되는 온도변화 환경에서의 상변환재료 캡슐의 안정성을 분석하기 위해 주사전자현미경을 이용하였다. 상변환 재료의 열에너지 저장 및 방출 능력은 시멘트의 미소수화열 발생에 상당한 변화를 주었으며, 온도변화에 의한 상변환 재료 캡슐계면의 이상은 발생하지 않는 것으로 나타났다.

  • PDF

Fourth Graders Engaged in Sampling: A Case Study (초등학교 4학년 학생들의 표집활동 분석: 사례연구)

  • Park, Min-Sun;Ko, Eun-Sung
    • School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.503-518
    • /
    • 2014
  • This study examines fourth graders engaged in three concrete activities involving sampling from finite populations. The first included a survey of popular foods for school meals. The second had them take samples from a box containing white and black marbles to predict how many white and black marbles were in the box. The final activity required them to predict how many times the Korean letter '가' would appear in a Korean story book. The results show that the participants can experience and notice different ideas related to samples and sampling in different activities. In the first activity, they acknowledged that samples are useful for obtaining the information about populations. A population survey is difficult and is not overly useful. In the second activity, they recognized that samples cannot be identical to their population but that the information from a group of samples is similar to the information of the population. In the last activity, they devised some ideas about random sampling even though the ideas were immature.

  • PDF

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF