• Title/Summary/Keyword: bisphenol-S

Search Result 136, Processing Time 0.023 seconds

Cytotoxicity of Environmental Estrogenic Compound, Bisphenol A, via Generation of Free Radicals (내분비계 장애물질인 Bisphenol A의 free radical 생성을 통한 독성발현)

  • 안광현;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Bisphenol A shares similarities in structure, metabolism and action with DES, a known human teratogen and carcinogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. The purpose of the this study was to evaluate the cytotoxicity, cell proliferation of bisphenol A In the presence of a rat liver S9 mix, contaning cytochrome P450 enzymes, and Cu (II). In the present study, Bisphenol A in combination with Cu (II) exhibited a enhancement in cytotoxicity which were inhibited by free radical scavengers. The content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with concentration of bisphenol A. Also, we examined the change of CuZn-SOD, Mn-SOD, catalase and GPx activities in the MCF-7 cells exposed to bisphenol A. The activities of CuZn-SOD, CPx, catalase were found to decrease with bisphenol A concentration. Meanwhile, the activity of Mn-SOD was unchanged. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells.

Optimazation of the Assement and Apotosis of Endocrine-Bisphenol A Disruptors (내분비계장애물질 평가방법의 최적화 및 Apoptosis에 관한 연구)

  • Ahn Kwang-Hyun;Lee Kyung-A;Kim Bong-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • Xenoestrogens are chemicals with diverse structure that mimic estrogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. Bisphenol A stimulate cell proliferation and induce expression of estrogen -response genes in vitro. The purpose of the this study was to evaluate cell proliferation of bisphenol A in the presence of a rat liver 59 mix contaning cytochrome P450 enzymes and Cu (II). The fragmentation of intact DNA, a parameter of apoptotic cell death, was evaluated quantitatively by diphenylamine reaction method. Bisphenol A induced apoptotic cell death in a dose-dependent manner The effect of radical scavenger on the apoptotic cell death induced bisphenol A was investigated. The DNA fragmentation induced by bisphenol A was significantly inhibited by addition of radical scavenger to the culture medium. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells. Taken together, these results suggest that free radical reacts with Cu (II) leading oxidative stress.

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins (Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.501-507
    • /
    • 2002
  • In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

Synthesis and Characterization of Poly(ether Sulfone)s Containing Bisphenol-TP for PEMFC (고분자 전해질 막 연료전지를 위한 Bisphenol-TP를 포함한 Poly(ether sulfone)s 고분자 막의 합성과 특성)

  • Lim, Young-Don;Seo, Dong-Wan;Lee, Soon-Ho;Islam, Monirul;Kang, Da-Lib;Kim, Whan-Gi
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2010
  • Poly (ether sulfone)s with Bisphenol-TP and Bisphenol-AF were prepared with Bisphenol-TP <4,4-dihydroxy tetraphenyl methane>, 4-Fluorophenyl sulfone, and Bisphenol-AF <4,4-(hexafluoroisopropylidene) diphenol> using Potassium carbonate in Sulfolane at $210^{\circ}C$. Sulfonated PBTP-AF were obtained by reaction of Chlorosulfuric acid with copolymers. A series of copolymers were studied by $^1H$-NMR spectroscopy, Differential Scanning Calorimeter (DSC), and Thermo Gravimetric Analysis (TGA). Sorption experiments were conducted to observe the interaction of polymers with water and methanol.

Associations Between Thyroid Hormone Levels and Urinary Concentrations of Bisphenol A, F, and S in 6-Year-old Children in Korea

  • Jang, Yoonyoung;Choi, Yoon-Jung;Lim, Youn-Hee;Lee, Kyung-Shin;Kim, Bung-Nyun;Shin, Choong Ho;Lee, Young Ah;Kim, Johanna Inhyang;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • Objectives: Bisphenol A (BPA) is used in the electrical, mechanical, medical, and food industries. Previous studies have suggested that BPA is an endocrine disruptor. Regulation of BPA has led to increased use of bisphenol F (BPF) and bisphenol S (BPS). However, few studies have investigated the associations of BPF and BPS with thyroid dysfunction in children. Our study investigated the associations of prenatal BPA and early childhood BPA, BPF, and BPS exposure with thyroid function in 6-year-old children. Methods: Prenatal BPA concentrations were measured during the second trimester of pregnancy in an established prospective birth cohort. We measured urinary BPA, BPF, and BPS concentrations and thyroid hormone levels (thyroid-stimulating hormone, total T3, and free T4) in 6-year-old children (n=574). We examined the associations between urinary bisphenol concentrations and percentage change of thyroid hormone concentrations using multivariate linear regression. We also compared thyroid hormone levels by dividing the cohort according to BPA, BPF, and BPS concentrations. Results: The associations between prenatal BPA and total T3 levels were statistically significant in all models, except for girls when using a crude model. The associations between urinary BPA and BPS concentrations and levels of all thyroid hormones were not statistically significant. However, we observed that lower free T4 levels (-1.94%; 95% confidence interval, -3.82 to -0.03) were associated with higher urinary BPF concentrations in girls only. Conclusions: Our findings identified significant associations between prenatal BPA exposure and total T3 levels in all children and between BPF exposure and free T4 levels in girls only.

Adsorption of Bisphenol A Using Dried Rice Husk: Equilibrium, Kinetic and Thermodynamic Studies

  • Balarak, Davoud;Mostafapour, Ferdos Kord;Lee, Seung Mok;Jeon, Choong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.316-323
    • /
    • 2019
  • The adsorption of bisphenol A from an aqueous solution onto dried rice husk was investigated. Batch adsorption experiments were performed as a function of the pH, contact time, bisphenol A concentration, adsorbent dose and temperature. The concentration of Bisphenol A was measured by HPLC. The results showed that bisphenol A removal was highest at a solution pH value of 3, adsorbent dose of 4 g/L, and contact time of 75 min. The bisphenol A removal percentage decreased from 99.1 to 66.7%, when the bisphenol A concentration increased from 10 to 200 mg/L. The Langmuir isotherm and pseudo-second order kinetics provided the best fit for the experimental data. Thermodynamic parameters such as ${\Delta}G^0$, ${\Delta}H^0$ and ${\Delta}S^0$ were also evaluated and it was found that the sorption process was feasible, spontaneous and exothermic in nature. Overall, the studied absorbent can be used as an effective and low cost material to treat the industrial wastewater and aqueous solution containing phenolic compounds.

Acute Toxicity of Bisphenol A to the Crustacean Daphnia magna (물벼룩을 이용한 bisphenol A의 급성독성 평가)

  • Hwang, Gab-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.392-396
    • /
    • 2007
  • Aquatic ecotoxicity of bisphenol A, a well-known endocrine disrupter in mammals, was studied using laboratory-reared Daphnia magna as a test organism. The static acute 48 h $EC_{50}$ of bisphenol A for daphnid neonates(<24 hold) was 12.9 mg/l and 110 h $LC_{50}$ values of bisphenol A for daphnid embryos of different ages after deposition into the brood chamber increase with ages in the range of 1.55 mg/l-8.91 mg/l. Also, 48 h $EC_{50}s$ generally increase with daphnid's ages in the range of 12.9 mg/l-19.8 mg/l. In the acute toxicity tests using mature daphnids, the lethal response and immobility all showed good concentration-response relationship with exposure concentration and exposure time, showing little difference between lethality and immobility. These results clarify that acute toxicity tests, using daphnid and its embryo, could also be useful tools easily available for the assessment of ecotoxicity of various harmful chemicals.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.

Current State of Use and the Risks of Bisphenols: A Minireview (비스페놀류의 사용 현황과 위해성: 소고)

  • Song, Chang Yeob;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.581-594
    • /
    • 2017
  • Bisphenol A(BPA), known as a typical endocrine disruptor, has been used commercially and widely for plastics and epoxy resins. BPA-based plastic is used extensively for the production of water bottles, food containers, CDs, DVDs, and panels that can be applied in construction. Epoxy resins containing BPA are used for coatings on the insides of water pipes, food cans, and thermal papers that are used in sales receipts. As its estrogenic effects and other adverse health effects have published, BPA has been regulated in many countries, and there have been efforts made to replace BPA. Other bisphenols substitutes such as bisphenol S(BPS) and bisphenol F(BPF) have been used. Currently, BPS- and BPF-based products labeled BPA-free products have been widely consumed. Because of structural similarities with BPA, however, these alternatives also show endocrine disruption effects like BPA, and many studies on adverse health effects of these alternatives are being reported. In this review, we describe the adverse health effects of bisphenols and the current status of regulation.

Endocrine Disruption Potentials of Bisphenol A Alternatives - Are Bisphenol A Alternatives Safe from Endocrine Disruption?

  • Ji, Kyunghee;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Objectives: Although a great body of knowledge is available on the toxicity of bisphenol A (BPA), little is known about that of BPA alternatives, such as bisphenol analogues (BPs) or $Tritan^{TM}$ copolyesters. This review provides a summary of the available information on the toxicity of BPs and three components of $Tritan^{TM}$, with a special focus on endocrine disruption. Methods: We collected from the literature a battery of in vitro and in vivo assay data developed to assess endocrine disruption of four BPs (bisphenol AF, B, F, and S) and three major components of $Tritan^{TM}$ ((di-methylterephthalate (DMT), 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD)). Results: Several alternative compounds were identified as possessing comparable or even greater endocrinedisrupting effects than BPA in in vitro and in vivo studies. Conclusions: Potential endocrine disruption of BPA alternatives requires further studies on health consequences in experimental animals and in humans following longer term exposure.