Browse > Article
http://dx.doi.org/10.14478/ace.2019.1013

Adsorption of Bisphenol A Using Dried Rice Husk: Equilibrium, Kinetic and Thermodynamic Studies  

Balarak, Davoud (Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences)
Mostafapour, Ferdos Kord (Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences)
Lee, Seung Mok (Department of Environmental Engineering, Catholic Kwandong University)
Jeon, Choong (Department of Biochemical Engineering, Gangneung-Wonju National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 316-323 More about this Journal
Abstract
The adsorption of bisphenol A from an aqueous solution onto dried rice husk was investigated. Batch adsorption experiments were performed as a function of the pH, contact time, bisphenol A concentration, adsorbent dose and temperature. The concentration of Bisphenol A was measured by HPLC. The results showed that bisphenol A removal was highest at a solution pH value of 3, adsorbent dose of 4 g/L, and contact time of 75 min. The bisphenol A removal percentage decreased from 99.1 to 66.7%, when the bisphenol A concentration increased from 10 to 200 mg/L. The Langmuir isotherm and pseudo-second order kinetics provided the best fit for the experimental data. Thermodynamic parameters such as ${\Delta}G^0$, ${\Delta}H^0$ and ${\Delta}S^0$ were also evaluated and it was found that the sorption process was feasible, spontaneous and exothermic in nature. Overall, the studied absorbent can be used as an effective and low cost material to treat the industrial wastewater and aqueous solution containing phenolic compounds.
Keywords
Rice husk; Bisphenol A; Isotherm; Adsorption; Kinetics; Thermodynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Hamzeh, A. Ashori, E. Azadeh, and A. Abdulkhani, Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent, Mater. Sci. Eng. C., 32(6), 1394-1400 (2012).   DOI
2 F. A. Banat, B. Al-Bashir, S. Al-Asheh, and O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut., 107(3), 391-398 (2000).   DOI
3 S. L. Wang, Y. M. Tzou, Y. H. Lua, and G. Sheng, Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazar. Mater., 147, 313-318 (2007).   DOI
4 Y. Dong, D. Wu, X. Chen, and Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci., 348, 585-590 (2010).   DOI
5 D. Gulbeyi, H. Cicek, and A. Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater., 125(1-3), 175-182 (2013).   DOI
6 D. Balarak and A. Joghataei, Biosorption of phenol using dried rice husk biomass: Kinetic and equilibrium studies, Der Pharma Chemica, 8(6), 96-103 (2016).
7 C. R. Girish and M. V. Ramachandra, Studies on adsorption of phenol from wastewater by agricultural waste, J. Environ. Sci. Eng., 55(3), 275-282 (2013).
8 S. Rengaraj, S. H. Moon, R. Sivabalan, B. Arabindoo, and V. Murugesan, Agricultural solid waste for the removal of organics: Adsorption of phenol from water and wastewater by palm seed coat activated carbon, Waste Manag., 22(5), 543-548 (2002).   DOI
9 A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite, J. Hazard. Mater., 144(1-2), 307-315 (2007).   DOI
10 M. Anbia and A. Ghaffari, Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer, Appl. Surf. Sci., 255(23), 9487-9492 (2009).   DOI
11 L. Joseph, L. K. Boateng, J. R. V. Flora, Y.-G. Park, A. Son, and M. Badawy, Removal of bisphenol A and $17{\alpha}$-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon, Sep. Purif. Technol., 107(0), 37-47 (2013).   DOI
12 Y. Zhou, P. Lu, and J. Lu, Application of natural biosorbent and modified peat for bisphenol a removal from aqueous solutions, Carbohydr. Polym., 88(2), 502-508 (2012).   DOI
13 J. Zhang, B. Sun, and X. Guan, Oxidative removal of bisphenol A by permanganate: Kinetics, pathways and influences of co-existing chemicals, Sep. Purif. Technol., 107(0), 48-53 (2013).   DOI
14 Z. Qiu, L. Wang, and Q. Zhou, Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings, Chemosphere, 90, 1274-1280 (2013).   DOI
15 H. Jiao, W. Peng, J. Zhao, and C. Xu, Extraction performance of bisphenol A from aqueous solutions by emulsion liquid membrane using response surface methodology, Desalination, 313(0), 36-43 (2013).   DOI
16 A. Omoike, T. Wacker, and M. Navidonski, Biodegradation of bisphenol A by Heliscus lugdunensis, a naturally occurring hyphomycete in freshwater environments, Chemosphere, 91(11), 1643-1647 (2013).   DOI
17 A. Ozkan and U. Handan, Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye reactive red 195 into Pinus sylvestris, J. Hazard. Mater., 181, 666-672 (2010).   DOI
18 A. H. Mahvi, A. Maleki, and A. Eslimi, Potential of rice husk ash for phenol removal in aqueous systems, Am. J. Appl. Sci., 1(4), 321-326 (2004).   DOI
19 M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, and L. Mandi, Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies, J. Hazard. Mater., 166(1), 117-125 (2009).   DOI
20 Q. Song, H. S. Fei, and G. Yu, Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with $Fe_{2}O_{3}$ particles, J. Hazard. Mater., 160, 643-647 (2008).   DOI
21 G. Crini and P. M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci., 33, 399-447 (2008).   DOI
22 C. Meziti and A. Boukerroui, Removal of a basic textile dye from aqueous solution by adsorption on regenerated clay, Procedia Eng., 33(0), 303-312 (2012).   DOI
23 N. M. Hilal, I. A. Ahmed, and E. E. Badr, Removal of acid dye (AR37) by adsorption onto potatoes and egg husk: A comparative study, J. Am. Sci., 8(2), 341-348 (2012).
24 V. K. Garg, R. Gupta, Y. A. Bala, and R. Kumar, Dye removal from aqueous solution by adsorption on treated sawdust, Bioresour. Technol., 89(2), 121-124 (2003).   DOI
25 T. V. N. Padmesh, K. Vijayaraghavan, G. Sekaran, and M. Velan, Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions, Chem. Eng. J., 11(122), 55-63 (2006).
26 R. A. Doong, C. W. Tsai, and C. I. Liao, Coupled removal of bisphenol A and copper ion by titanate nanotubes fabricated at different calcination temperatures, Sep. Purif. Technol., 91, 81-88 (2012).   DOI
27 M. A. Zazouli, Y. Mahdavi, E. Bazrafshan, and D. Balarak, Phyto degradation potential of bisphenol A from aqueous solution by Azolla Filiculoides, J. Environ. Health Sci. Eng, 12, 66-74 (2014).   DOI
28 B. Seyhi, P. Drogui, G. Buelna, and J. F. Blais, Removal of bisphenol-A from spiked synthetic effluents using an immersed membrane activated sludge process, Sep. Purif. Technol., 87(0), 101-109 (2012).   DOI
29 Y. Q. Huang, C. K. C. Wong, J. S. Zheng, H. Bouwman, R. Barra, and B. Wahlstrom, Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts, Environ. Int., 42(0), 91-99 (2012).   DOI
30 J. Heo, J. R. V. Flora, N. Her, Y. G. Park, J. Cho, and A. Son, Removal of bisphenol A and 17b-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs-UF) membrane systems, Sep. Purif. Technol., 90, 39-52 (2012).   DOI
31 G. Liu, J. Ma, X. Li, and Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164, 1275-1280 (2009).   DOI
32 D. Balarak and Y. Mahdavi, Survey of efficiency agricultural waste as adsorbent for removal of P-cresol from aqueous solution, Int. Res. J. Pure Appl. Chem., 10(2), 1-11 (2016).
33 C. Wu, Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 144, 93-100 (2007).   DOI
34 R.-A. Dyanati-Tilaki, Z. Yousefi, J. Y. Cherati, and D. Balarak, The ability of azolla and Lemna minor biomass for adsorption of phenol from aqueous solutions, J. Mazandaran Univ. Med. Sci., 23(106), 17-23 (2013).
35 E. Rubin, P. Rodriguez, and R. Herrero, Biosorption of phenolic compounds by the brown alga Sargassum muticum, J. Chem. Technol. Biotechnol., 81(7), 1093-1099 (2006).   DOI
36 Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465 (1999).   DOI
37 A. K. Mishra, T. Arockiadoss, and S. Ramaprabhu, Study of removal of azo dye by functionalized multi walled multi-walled carbon nanotubes, Chem. Eng. J., 162, 1026-1034 (2010).   DOI
38 R. Aravindhan, J. R. Rao, and B. U. Nair, Application of a chemically modified green macro alga as a biosorbent for phenol removal, J. Environ. Manag., 90(5), 1877-1883 (2009).   DOI
39 V. Vadivelan and K. V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286, 90-100 (2005).   DOI
40 S. Chatterjee, M. W. Lee, and S. H. Wooa, Adsorption of congo red by chitosan hydrogel beads impregnated with multi-walled carbon nanotubes, Bioresour. Technol., 101, 1800-1806 (2010).   DOI
41 M. A. Zazouli, C. J. Yazdani, D. Balarak, M. Ebrahimi, and Y. Mahdavi, Investigating the removal rate of acid blue 113 from aqueous solution by Canola (Brassica napus). J. Mazandaran Univ. Med. Sci., 23(Suppl-2), 71-78 (2013).
42 M. A. Zazouli, A. H. Mahvi, Y. Mahdavi, and D. Balarak, Isothermic and kinetic modeling of fluoride removal from water by means of the natural biosorbents sorghum and canola, Fluoride, 48(1), 15-22 (2015).
43 D. Balarak, F. K. Mostafapour, and A. Joghataei, Adsorption of acid blue 225 dye by multi walled carbon nanotubes: Determination of equilibrium and kinetics parameters, Der Pharma Chemica, 8(8), 138-145 (2016).
44 G. Dursun, H. Cicek, and A. Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater., 125, 175-182 (2005).   DOI
45 V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad, and I. M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids Surf. A, 272, 89-104 (2006).   DOI
46 D. Balarak, Kinetics, isotherm and thermodynamics studies on bisphenol A adsorption using barley husk, Int. J. ChemTech Res., 9(5), 681-690 (2016).
47 D. Balarak, Y. Mahdavi, E. Bazrafshan, and A. H. Mahvi, Kinetic, isotherms and thermodynamic modeling for adsorption of acid blue 92 from aqueous solution by modified Azolla filicoloides, Fresenius Environ. Bull., 25(5), 1321-1330 (2016).
48 M. Dina, H. N. Bhattia, M. Yasira, and A. Ashrafa, Direct dye biosorption by immobilized barley husk, Desalination Water Treat., 54, 45-53 (2015).
49 A. Maleki, A. H. Mahvi, M. A. Zazouli, H. Izanloo, and A. H. Barat, Aqueous cadmium removal by adsorption on barley hull and barley hull ash, Asian J. Chem., 23(3), 1373-1376 (2011).
50 I. Haq, H. N. Bhatti, and M. Asgher, Removal of solar red BA textile dye from aqueous solution by low cost barley husk: Equilibrium, kinetic and thermodynamic study, Can. J. Chem. Eng., 89(3), 593-600 (2011).   DOI
51 T. Robinson, B. Chandran, and P. Nigam, Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk, Environ. Int., 28(1-2), 29-33 (2002).   DOI
52 T. Robinson, B. Chandran, and P. Nigam, Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption, Bioresour. Technol., 85(2), 119-124 (2002).   DOI