• Title/Summary/Keyword: bis[3-(triethoxysilylpropyl)]tetrasulfide

Search Result 4, Processing Time 0.018 seconds

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent (양기능성 커플링제 실란에 의한 실리카-천연고무 복합소재의 계면간 결합 고찰)

  • Lee, Jong-Young;Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.240-246
    • /
    • 2015
  • Formation of a strong 3-dimensional interfacial network structure via chemical reaction between hydroxyl group on silica surface and NR chain by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) into silica-filled NR compound was observed by using Py-GC/MS and SEM. Addition of TESPT into silica-filled NR compound decreased scorch time ($t_{10}$) due to increased sulfur content, and reduced cure rate index (CRI) via continuous reaction between sulfur atoms in TESPT, which acted as a sulfur donor, and activators and/or accelerators. Addition of TESPT in the compound improved processability and mechanical properties of the compound. Overall, we observed that the addition of TESPT into the silica-filled NR compound formed a silica-TESPT-NR network, and thus the degree of crosslinking was increased resulting in improved mechanical properties.