• Title/Summary/Keyword: bird influenza

Search Result 32, Processing Time 0.03 seconds

Evaluation on Immunogenicity and Safety of Avian Influenza Isolate(ADL0401) as a Candidate for the Killed Vaccine against tow-Pathogenic Avian Influenza (약병원성 조류인플루엔자 사독백신개발을 위한 후보주(ADL0401)의 면역 원성 및 안전성 평가)

  • Lee J. S.;Ha D. H.;Kim J. E.;Ha B. D.;Mo I. P.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Avian influenza (AI) virus (AIV) is distributed worldwide and it has been isolated from various species of wild and domestic birds. AI transfers with high speed and shows diverse pathogenicity syndroms. In Korea, several low Pathogenic AIV, H9N2, have been isolated from the commercial farms with severe decrease of egg production and mortality resulted in severe economic loss since 1996. Therefore, it has been requested to develop AI vaccines to prevent clinical signs and economic losses from the field infection of AIV. To develop a killed vaccine that efficiently prevents low pathogenic AIV (H9N2), evaluation on the pathogenicity and selection of an inactivator for H9N2 is taking place and is being tested safety and immunogenicity of vaccine produced. Based on the pathogenicity test and viral reisolation test, the ADL0401 isolate is the characteristic low pathogenic AIVs and has fairly similar biologic functions compared with MS96 which is the official low pathogenic AIV (H9N2) and one of the predominant AIV isolated from poultry farms in Korea. In antigenicity tests, the ADL0401 and MS96 virus have no significant antigenic difference. In inactivation tests, the ADL0401 isolates can be easily inactivated with $0.1\%$ Formalin at $37^{\circ}C$ within 1 hour with a little decrease of HA titer. The vaccine developed in the present report has no harmful effect on bird and forms good immune capability. Therefore, the isolates, ADL0401 can be used for a killed vaccine which can reduce the clinical signs and viral shedding in the birds infected with H9N2 low pathogenic AIVs.

Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China

  • Zhang, Qian;Mei, Xindi;Zhang, Cheng;Li, Juan;Chang, Nana;Aji, Dilihuma;Shi, Weifeng;Bi, Yuhai;Ma, Zhenghai
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.43.1-43.10
    • /
    • 2021
  • Background: The H5 avian influenza viruses (AIVs) of clade 2.3.4.4 circulate in wild and domestic birds worldwide. In 2017, nine strains of H5N6 AIVs were isolated from aquatic poultry in Xinjiang, Northwest China. Objectives: This study aimed to analyze the origin, reassortment, and mutations of the AIV isolates. Methods: AIVs were isolated from oropharyngeal and cloacal swabs of poultry. Identification was accomplished by inoculating isolates into embryonated chicken eggs and performing hemagglutination tests and reverse transcription polymerase chain reaction (RT-PCR). The viral genomes were amplified with RT-PCR and then sequenced. The sequence alignment, phylogenetic, and molecular characteristic analyses were performed by using bioinformatic software. Results: Nine isolates originated from the same ancestor. The viral HA gene belonged to clade 2.3.4.4B, while the NA gene had a close phylogenetic relationship with the 2.3.4.4C H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated from shoveler ducks in Ningxia in 2015. The NP gene was grouped into an independent subcluster within the 2.3.4.4B H5N8 AIVs, and the remaining six genes all had close phylogenetic relationships with the 2.3.4.4B H5N8 HPAIVs isolated from the wild birds in China, Egypt, Uganda, Cameroon, and India in 2016-2017, Multiple basic amino acid residues associated with HPAIVs were located adjacent to the cleavage site of the HA protein. The nine isolates comprised reassortant 2.3.4.4B HPAIVs originating from 2.3.4.4B H5N8 and 2.3.4.4C H5N6 viruses in wild birds. Conclusions: These results suggest that the Northern Tianshan Mountain wetlands in Xinjiang may have a key role in AIVs disseminating from Central China to the Eurasian continent and East African.

The outbreaks and counterplan of highly pathogenic avian influenza in Korea and overseas (국내.외 조류인플루엔자(HPAI) 발생현황과 대응방안)

  • Jang, Hyung-Kwan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.220-227
    • /
    • 2009
  • For last about 10 years, the Republic of Korea experienced 3 times of outbreaks of highly pathogenic avian influenza (HPAI) from 10 December 2003 to 30 April 2004 (a total number of 19 outbreaks), 22 November 2006 to 6 March 2007 (a total number of 7 outbreaks), and 1 April 2008 to 12 May 2008 (a total number of 33 outbreaks). Among the totally 59 outbreaks, the infected premises included 35 chicken farms, 17 duck farms, 1 quail farm, and 6 farms rearing mixed species. Control measures were applied according to the HPAI standard operation procedure including depopulation of all infected and suspected flocks, movement restrictions, and disinfection of the infected farms within a 500-meter radius. Including movement restrictions, stringent control measures were additionally applied to two designated zones: the protection zone was an area within a 3-kilometer radius of the outbreak farm, and the surveillance zone was an area between a 3- to 10-kilometer radius of the outbreak farm. Farms with dangerous contacts and/or all of poultry within the protection zone was subjected to preemptive culling. Epidemiological investigations were also carried out including trace-back and trace-forward investigations to identify possible sources of spread and dangerous contact farms. Investigation teams conducted on-site examination of farm premises and facilities, interview with farm owner and staff, and review of records. Genetic and pathogenic characteristics of the virus isolates, and the results of the various surveillance activities were also analyzed. HPAI surveillance conducted in Korea includes passive surveillance of investigating notified cases, and active surveillance of testing high risk groups and areas. HPAI is a notifiable disease in Korea and all suspect cases must be reported to the veterinary authorities. Cases reported for other poultry diseases that require differential diagnosis are also tested for HPAI. Active surveillance includes annual testing of breeder duck farms, broiler duck farms and wild bird surveillance, which is concentrated during the autumn and winter. Surveillance activities conducted prior to the outbreaks have shown no evidence of HPAI infection in Korea.

  • PDF

Chicken FMRP Translational Regulator 1 (FMR1) Promotes Early Avian Influenza Virus Transcription without Affecting Viral Progeny Production in DF1 Cells

  • Woo, Seung Je;Park, Young Hyun;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • Avian influenza viruses (AIVs) must utilize host cellular factors to complete their life cycle, and fragile X mental retardation protein (FMRP) has been reported to be a host factor promoting AIV ribonucleoprotein (vRNP) assembly and exports vRNP from the nucleus to the cytoplasm. The functional role of chicken FMRP translational regulator 1 (cFMR1) as a host factor of AIV is, however, poorly understood. In this study, we targeted the cFMR1 gene in DF1 cells using clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing to examine the functional role of cFMR1 as a host factor of AIV. We found that cFMR1 stimulated viral gene transcription during early stages of the viruses' life cycle and did not affect viral progeny production and viral polymerase activity in DF1 cells 24 hours post infection. cFMR1 overexpression did not exert significant effects on virus production, compared to the control. Therefore, unlike in mammalian systems (e.g., humans or mice), cFMR1 did not play a pivotal role in AIV but only seemed to stimulate viral proliferation during early stages of the viral life cycle. These results imply that the interplay between host factors and AIV differs between mammals and avian species, and such differences should be considered when developing anti-viral drugs for birds or establishing AIV-resistant bird models.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Epidemiological Studies of Avian Paramyxovirus Type 4 and 6 in Commercial Chicken Flocks in Korea

  • Lee, Hae Rim;Koo, Bon-Sang;Jeon, Eun-Ok;Han, Moo-Sung;Min, Kyung-Cheol;Lee, Seung Baek;Bae, Yeonji;Choi, Kang-Seuk;Shin, Jeong-Hwa;Mo, In-Pil
    • Korean Journal of Poultry Science
    • /
    • v.40 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • Avian paramyxovirus (APMV) type 4 and 6 were isolated during an avian influenza (AI) surveillance program of wild birds. This study also conducted experimental infection of wild-bird-origin APMV type 4 and 6 in specific pathogen free (SPF) chickens to study pathogenicity and transmission within domestic flocks. In addition, serological prevalence data of APMV type 4 and 6 in domestic fowls was conducted with chicken sera collected from 2007 to 2009 in order to understand infection status. The results of the animal experiment showed that APMV type 4 and 6 had the ability to infect chickens with sero-conversion and to transmit the virus from infected birds to contacted birds, but showed low pathogenicity. Serological tests revealed that APMV type 4 was widespread in the poultry industry, especially in layer flocks, but the positive rate for APMV type 6 was very low. This study concluded that wild bird-origin APMV type 4 and 6 could infect the chickens by inter-species transmission and the seroprevalence of APMV type 4 was quite high in Korean poultry. However, since almost all the chicken flocks had a high level of antibody titer against APMV type 1, there was possibility of cross reaction between APMV type 1 and 4, which made the interpretations more complicated. In order to understand infection status in the natural environment, additional study is necessary regarding the seroprevalence of APMV type 4 and 6 in the wild bird population.

First detection of a G1-like H9N2 virus in Russia, 2018

  • Sharshov, Kirill;Kurskaya, Olga;Sobolev, Ivan;Leonov, Sergey;Kabilov, Marsel;Tatyana, Alikina;Alekseev, Alexander;Derko, Anastasiya;Yushkov, Yuriy;Saito, Takehiko;Uchida, Yuko;Mine, Junki;Irza, Victor;Shestopalov, Alexander
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Worldwide, avian influenza H9N2 viruses of different lineages are the most widespread viruses in poultry. However, to date, cases in Russia have not been documented. In this study, we report the first detection of a G1-like H9N2 virus from poultry sampled at live-bird markets in Russia (Far East region) during the winter of 2018 (isolate A/chicken/Amur_Russia/17/2018). We assume there has been further circulation of the A/chicken/Amur_Russia/17/2018 H9N2 virus in the Russian Far East with possible distribution to other regions or countries in 2018-2019.

Evaluation of Avian Influenza and Newcastle Disease Virus Detection Kit using Field Samples from Domestic and Semi-domestic Birds (닭과 야생사육조류로부터 야외샘플을 사용한 조류인플루엔자와 뉴캣슬병 바이러스 검출 키트의 평가)

  • Rahman, Md. Siddiqur;Malek, Md. Abdul;Islam, Md. Alimul;Uddin, Muhamad Jasim;Ahasan, Md. Shamim;Chakrabartty, Amitavo;Sakib, Md. N.;Chae, Joon-Seok
    • Journal of Veterinary Clinics
    • /
    • v.29 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • The study was undertaken to evaluate sensitivity and specificity of rapid Avian Influenza (AI) and Newcastle Disease virus (NDV) combo antigen kits from field samples of domestic (broiler and layer chicken, native chicken) and semi-domestic (duck, goose, pigeon and quail) birds of Bangladesh. Samples were collected from naturally infected AI suspected domestic and semi-domestic birds of five different outbreak areas in Bangladesh. From each area two birds were selected for sampling, and from each bird three types of samples (tracheal, cloacal and oro-nasal swabs) were collected. A total of 210 field samples from a total of 70 birds were collected and tested using AI and NDV combo antigen rapid diagnostic kits in the study. All three different samples from a bird showed similar pattern of reaction. Out of 210 samples, 15 samples (5 birds), 63 samples (21 birds) and 27 samples (9 birds) were positive for AIV, NDV and both for AIV and NDV, respectively; whereas the remaining birds were negative for either AIV or NDV in this screening test. Among the five AIV positive, a layer chicken from wet market in Mymensingh, Netrokona, Gibandha and Kurigram and a native chicken from wet market in Kurigram area was positive to AIV. The semi-domestic birds are either positive to NDV or free from both AIV and NDV. This study revealed that the AIV and NDV rapid diagnostic kits could be effectively use to diagnose the respective virus in trachea, oro-nasal and cloacal samples simultaneously. AIV-NDV combo Ag test result clearly indicates that the test kit designed for AIV and NDV could diagnose the disease rapidly with less effort and higher scientific know how which could be used for the detection of AIV and NDV using field samples in large scale.

Locational Characteristics of Highly Pathogenic Avian Influenza(HPAI) Outbreak Farm (고병원성 조류인플루엔자(HPAI) 발생농가 입지특성)

  • KIM, Dong-Hyeon;BAE, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.140-155
    • /
    • 2020
  • This study was conducted to identify the location characteristics of infected farms in the areas where livestock diseases were clustered(southern Gyeonggi-do and Chungcheong-do), analyze the probability of disease occurrence in poultry farms, find out the areas corresponding to the conditions, and use them as the basis for prevention of livestock diseases, selection of discriminatory prevention zones, and establishment of prevention strategies and as the basic data for complementary measures. The increase of one poultry farm within a radius of 3-kilometers increases the risk of HPAI infection by 10.9% compared to the previous situation. The increase of 1m in distance from major roads with two lanes or more reduces the probability of HPAI infection by 0.001% compared to the previous situation. If the distance of the poultry farm located with 15 kilometers from a major migratory bird habitat increases by 15 to 30 kilometers, the chance of infection with HPAI is reduced by 46.0%. And if the distance of the same poultry farm increase by more than 30 kilometers, the chances of HPAI infection are reduced by 88.5%. Based on the results of logistic regression, the predicted probability was generated and the actual area of the location condition with 'more than 15 poultry farms within 3km a radius of, within 1km distance from major roads, and within 30km distance from major migratory birds habitat was determined and the infection rate was measured. It is expected that the results of this study will be used as basic data for preparing the data and supplementary measures when the quarantine authorities establish discriminatory quarantine areas and prevention strategies, such as preventive measures for the target areas and farms, or control of vehicles, by identifying the areas where livestock diseases are likely to occur in the region.

Determination of pesticides in dead wild birds in Korea (우리나라 폐사 야생조류에서의 농약 분석)

  • Kim, MeeKyung;Yun, Seon Jong;Kim, Dong-Gyu;Bong, Young-Hoon;Kim, Heuijin;Jang, Jung-Hee;Chung, Gab-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • Pesticides are extensively used for the control of crop pests in agriculture and forestry. Organophosphate (OP) and carbamate pesticides are especially effective for the control of a variety of harmful insects. However, these cholinesterase inhibitors are also dangerous to non-target organisms (wildlife and other animals) because of their high acute toxicity. Most poisonings by pesticides occur as a result of misuse or accidental exposure, but intentional killing of unwanted animals also occurs. At the request of a local autonomous entity, we investigated wild bird poisonings by pesticides from 2003 to 2007. The 207 suspicious samples of pesticide poisoning based on the necropsy were analyzed by GC/NPD, GC/FPD, or GC/MSD. We looked for trends in the identification of pesticides in wild birds thought to have died from poisoning. Pesticides were determined in 59% of the total samples analyzed. Phosphamidon and monochrotophos were the most common pesticides identified, which amounted to 77% of the subtotal. Other OP and carbamate pesticides were also found in various concentrations from dead wild birds. The determined rates of pesticides were as high as 86% and 76% in 2003 and 2006, respectively, during an outbreak of avian influenza in Korea.