• Title/Summary/Keyword: biphenyl

Search Result 484, Processing Time 0.031 seconds

Characterization of the pcbE Gene Encoding 2-Hydroxypenta-2,4-Dienoate Hydratase in Pseudomonas sp. DJ-12

  • Lim, Jong-Chul;Lee, Jeongrai;Jang, Jeong-Duk;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.187-195
    • /
    • 2000
  • Nucleotide sequence extending 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (pcbC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase gene (pcbD) of Pseudomonas sp. DJ-12 was previously analyzed and the two genes were present in the order of pcbD-pcbC preceded by a promoter from Pseudomonas sp. DJ-12. In this study, a 3.8-kb nucleotide sequence located downstream of the pcbC gene was analyzed to have three open reading frames (ORFs) that are designated as orf1, pcbE and orf2 genes. All of the ORFs were preceded by each ribosome-binding sequence of 5-GGAXA-3 (X=G or A). However, no promoter-like sequence and transcription terminator sequence were found in the analyzed region, downstream of pcbC gene. Therefore, the gene cluster appeared to be present in the order of pcbD-pcbC-orf1-pcbE-orf2 as an operon, which is unique organization characterized so far in biphenyl- and PCB-degrading bacteria. The orf1 gene was composed of 1,224 base pairs which can encode a polypeptide of molecular weight 44,950 containing 405 amino acid residues. A deduced amino acid sequence of the orf1 gene product exhibited 21-33% identity with those of indole dioxygenase and phenol hydroxylase components. The pcbE gene was composed of 783 base pairs encoding 2-hydroxypenta-2,4-dienoate hydratase involved in the 4-chlorobiphenyl catabolism. The orf2 gene was composed of 1,017 base pairs encoding a polypeptide of molecular weight 37,378 containing 338 amino acid residues. A deduced amino acid sequence of the orf2 gene product exhibited 31% identity with that of a nitrilotriacetate monooxygenase component.

  • PDF

Effect of the Length of Side Group Substitution on Optical and Electroluminescene Properties

  • Shin, Hwangyu;Kang, Hyeonmi;Kim, Beomjin;Park, Youngil;Yu, Young-Jun;Park, Jongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3041-3046
    • /
    • 2014
  • Blue emitting materials, 9,10-bis-biphenyl-4-yl-anthracene (AC-P), 9,10-bis-[1,1';4',1"]terphenyl-4-yl-anthracene (AC-DP), and 9,10-bis[3",5"-deiphenyltriphenyl-4'-yl]anthracene (AC-TP) were synthesized through boration and Suzuki aryl-aryl coupling reaction. EL performance of blue light-emitters was optimized and improved by varying the chemical structures of the side groups. In the thin film state, the three materials exhibit $PL_{max}$ values in the range of 442-456 nm. EL device with the synthesized compounds in the following configuration was fabricated: ITO/4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)triphenylamine (2-TNATA) 60nm/N,N'-bis (naphthalene-1-yl)-N,N'-bis(phenyl)benzidine (NPB) 15nm/synthesized blue emitting materials (30nm)/1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) 20nm/LiF 1nm/Al 200nm. The current efficiency and C.I.E. value of AC-TP were 3.87 cd/A and (0.15, 0.12). A bulky and non-planar side group helps to prevent ${\pi}-{\pi}^*$ stacking interaction, which should lead to the formation of more reliable amorphous film. This is expected to have a positive effect on the high efficiency of the operating OLED device.

Destruction and Removal of PCBs in Waste Transformer Oil by a Chemical Dechlorination Process

  • Ryoo, Keon-Sang;Byun, Sang-Hyuk;Choi, Jong-Ha;Hong, Yong-Pyo;Ryu, Young-Tae;Song, Jae-Seol;Lee, Dong-Suk;Lee, Hwa-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.520-528
    • /
    • 2007
  • A practical and efficient disposal of PCBs (polychlorinated biphenyls) in waste transformer oil by a chemical dechlorination process has been reported. The transformer oil containing commercial PCB mixtures (Aroclor 1242, 1254 and 1260) was treated by the required amounts of PEG 600 (polyethylene glycol 600), potassium hydroxide (KOH) and aluminum (Al), along with different reaction temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. The relative efficiencies of PCB treatment process were assessed in terms of destruction and removal efficiency (DRE, %). Under the experimental conditions of PEG600/KOH/Al/100 oC/2hr, average DRE of PCBs was approximately 78%, showing completely removal of PCBs containing 7-9 chlorines on two rings of biphenyl which appear later than PCB no. 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to 150 oC and 240 min, average DRE of PCBs including the most toxic PCBs (PCB no. 77, 105, 118, 123 and 169) in PCB family reached 99.99% or better, with the exception of PCB no. 5 and 8 (2,3-diCB and 2,4'-diCB). In studying the reaction of PEG with PCBs, it confirmed that the process led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines. The process also permits complete recovery of treated transformer oil through simple segregating procedures.

Recrystallization-Free Coating of Small Molecules for OLEDs (OLED를 위한 저분자 재결정 방지 코팅 기술)

  • Hong, Gi-Young;Lee, Jin-Young;Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.38-42
    • /
    • 2016
  • We investigate the solution coating process of organic small molecules that are easily recrystallized in a solvent. The spin-coated films of small molecule N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) exhibit many aggregations on the surface and thus poor surface morphology. To tackle it, we have added a chain-entangled polymer poly(N-vinylcarbazole) (PVK) into the NPB solution. It is found that a small amount of PVK indeed prohibits the recrystallization of NPB in a solvent. By the addition of PVK (30 wt%), the peak-to-peak roughness of the films is reduced from 262 nm down to 2.7 nm, which is even lower than that (~5.1 nm) of the polymer film. It is also demonstrated that OLED with the PVK-mixed NPB film shows higher current and power efficiencies, compared to OLED with the NPB or PVK film. It is attributed that the addition of PVK into NPB suppresses the occurrence of leaky channels induced by the recrystallization phenomenon.

다층 그래핀과 유기물로 구성된 계면의 전자분광학 분석을 이용한 에너지 준위 정렬 분석

  • Seo, Jae-Won;Kim, Ji-Hun;Gwon, Dae-Gyeon;Maeng, Min-Jae;Mun, Je-Hyeon;Lee, Jeong-Ik;Choe, Seong-Ryul;Kim, Taek-Yeong;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.163-163
    • /
    • 2013
  • 최근 들어서 유연 OLED (Organic Light-Emitting Diodes) 소자에 대한 연구가 증가하면서 전통적인 ITO 전극을 대체할 수 있는 전극물질 후보로 그래핀이 많은 주목을 받고 있다. 그 중에 CVD 방법으로 합성된 다층 그래핀(Few layer graphene, FLG)은 실제 상용화되는 소자에 응용이 될 가능성이 높아 많은 연구가 이 방향으로 진행되고 있다. 이 연구에서는 다층 그래핀과 유기물질 사이의 계면을 전자분광학 분석을 이용해 각 분자층 사이의 에너지 준위 변화에 대해 분석했다. 에너지 준위 정렬을 이용하면 각 분자층간의 정공주입 에너지장벽을 알 수 있는데 이 에너지 장벽은 소자의 효율에 직접적으로 연관되는 값이다. 정공 주입층 물질로는 TAPC 1,1- Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane (TAPC)를 사용했고, 다층 그래핀과 TAPC층 사이의 에너지 준위 정렬을 분석한 결과 다층 그래핀과 TAPC층 사이에는 ~1.4 eV의 에너지 장벽이 존재함을 확인했다. 하지만 OLED 소자로 활용하기 위해서는 이보다 더 낮은 에너지 장벽을 필요로 하기 때문에 두 물질 사이에 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl (NPB), 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN)을 삽입하여 에너지 장벽을 낮추기 위한 시도를 해 보았다. 그래핀과 TAPC 사이에 중간층으로 NPB를 사용했을 때의 에너지 장벽은 0.55 eV, HAT-CN을 사용했을 때는 0.4 eV로 TAPC만 사용했을 때보다 ~1 eV정도 에너지 장벽을 낮추는 효과를 보여줬다. 이 연구를 통해 다층 그래핀을 OLED 소자의 전극으로 활용할 수 있는 가능성을 볼 수 있었다.

  • PDF

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

방사광 가속기의 광전자 분광법을 이용한 전면 발광 유기발광 다이오드에서의 열중착 산화구리와 유기물 사이의 계면 dipole 에너지 및 정공 주입 효율에 대한 연구

  • Kim, Seong-Jun;Hong, Gi-Hyeon;Kim, Gi-Su;Lee, Il-Hwan;Lee, Jong-Ram
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.8-10
    • /
    • 2010
  • We report the enhancement of hole injection using thermally evaporated $CuO_x$ layer between Ag anode and 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl ($\alpha$-NPD) in top-emitting organic light-emitting diode (TEOLED). The operation voltage at the current density of $1mA/cm^2$ of TEOLEDs decreased from 6.2 V to 5.0 V as the $CuO_x$ layer inserted between Ag and $\alpha$-NPD. $\alpha$-NPD was deposited in situ on Ag/$CuO_x$ and Ag anodes, and their interface dipole energies were quantitatively determined using synchrotron radiation photoemission spectroscopy. The dipole energy of Ag/$CuO_x$ was lower by 0.05 eV even though Ag/$CuO_x$ had a higher work function. The work function of Ag/$CuO_x$ is higher by 0.53 eV than that of Ag, resulting in a decrease of the turn-on voltage via reduction of hole injection barrier.

  • PDF

The Effect of Polychlorinated Biphenyl on the Enzyme Activity in the Tissues of the Albino Rat (I) : The Effect of PCB on the Lactatedehydrogenase Activity (PCB가 흰쥐의 조직(組織) 효소(酵素) 활성(活性)에 미치는 영향(影響) (제일보(第一報)) - Lactatedehydrogenase에 관(關)해서 -)

  • Kwon, Jung Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.202-206
    • /
    • 1983
  • After examining the changes of LDH activity in the liver, brain and kidney of albino rats administrated with various amounts and periods, the following results were obtained: The LDH activity in liver, brain and kidney showed a gradual increase in proportion to the amount of PCB. The LDH activity has considerably increased with PCB administration, the maximum increasing rate shown within the first five days and the second five days respectively for 50 & 100 ppm group and for 10 ppm group. The LDH activity of brain in 50 and 100 ppm group showed its peak increase for the first five days with its subsequent decrease, while there was almost no change until the 1th day in 10 ppm group. The LDH activity in kidney showed the greatest increase between the 10th and 15th day.

  • PDF

Molecular Ecological Stabilities of Genetically Modified 4CB-Degrading Bacteria and Their Gene DNAs in Water Environments (유전공학적으로 변형시킨 4CB 분해세균 및 그 유전자 DNA에 대한 수계에서의 분자생태학적 안정성)

  • Park, Sang-Ho;Myong-Ja Kwak;Ji-Young Kim;Chi-Kyung Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.109-120
    • /
    • 1995
  • As the genetically modified microorganisms (GMMs) and their recombinant plasmid DNAs could be released into natural environments, their stabilities and impacts to indigenous microorganisls have become very importhant research subjects concerning with environmental and ecological aspects. In this study, the genetically modified E. coli CU103 and its recombinant pCU103 plasmid DNA, in which pcbCD genes involving in degradation of biphenyl and 4-chlorobiphenyl were cloned, were studied for their survival and stability in several different waters established under laboratory conditions. E. coli CU103 and its host E. coli XL1-Blue survived longer in sterile distilled water (SDW) and filtered autoclaved river water (FAW) than in filtered river water (FW). A lot of extracellular DNAs were released from E. coli CU103 by lytic action of phages in FW and the released DNAs were degraded by DNase dissolved in the water. Such effects of the factors in FW on stability of the recombinant pCU103 plasmid were also observed in the results of gel electrophoresis, quantitative analysis with bisbenzimide, and transformation assay. Therefore, the recombinant plasmids of pCU103 were found to be readily liberated from the genetically modified E. coli CU103 into waters by normal metabolic processes and lysis of cells. And the plasmid DNAs were quite stable in waters, but their stabilities could be affected by physicoKDICical and biological factors in non-sterile natural waters.

  • PDF

Chemical Treatment of the PCBs-laden Transformer Insulation Oil (PCBs 함유 변압기 절연유의 화학적처리)

  • Ryoo, Keon-Sang;Choi, Jong-Ha;Choi, Jin-Whan
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1499-1507
    • /
    • 2011
  • Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined. The removal efficiency of PCBs was very low at lower temperatures of 25 and $50^{\circ}C$. Under the reaction condition of PEG 600/KOH/$100^{\circ}C$/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to $150^{\circ}C$ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.