• Title/Summary/Keyword: biphasic system

Search Result 65, Processing Time 0.032 seconds

Kinetic Studies on the Reaction of Iron (Ⅲ) with D-penicillamine in Acidic Solution$^1$

  • Hyun-Jae Park;Yung-Hee Oh Kim;Jung-Ae Shim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.444-449
    • /
    • 1993
  • Anaerobic oxidation of D-penicillamine by Fe(III) in acidic solution has been studied kinetically by the use of stopped-flow system. The reaction is biphasic with a rapid complexation of 1: 1 complex, $Fepen^+$ (pen= D-penicillamine dianion) which is then internally reduced to Fe(II) and disulfide. Rates of both the complexation and the redox process are pH dependent and also are affected by the presence of chloride ion. Different from the reaction of Cu(II) with D-penicillamine, partially oxidized mixed-valence complex is not formed even transiently in this reaction.

Fabrication of 3D Bioceramic Scaffolds using Laser Sintering Deposition System and Design of Experiment (레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작)

  • Lee, Chang-Hee;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, we developed a novel laser sintering deposition system (LSDS) based on solid free-form fabrication (SFF) technology as it has the potential to fabricate complex geometries with controllable architecture for bone tissue engineering applications. The 3D biphasic calcium phosphate (BCP) scaffolds were fabricated with a pore size of 800㎛, a line width and height of 1000㎛, and an overall size of 8.2×8.2×8.0 mm3 according to the design of experiment (DOE) results. Additionally, an optimized manufacturing process using response surface analysis was established to fabricate 3D BCP scaffolds. The fabricated 3D BCP scaffolds were sintered at 950℃, 1050℃, 1150℃, and 1250℃ according to sintering processes with a furnace. As the sintering temperature increased, the porosity increased. Through the compressive strength test, the 3D BCP scaffolds sintered at 1050℃ presented good results of about 0.76 MPa. These results suggest that fabrication methods for 3D bioceramic scaffolds using LSDS may meet the basic requirements for bone tissue engineering.

Signal Processing and Implementation of Transmitter for Cochlear Implant (인공 와우를 위한 신호 처리 및 전달부의 구현)

  • Chae, D.;Choi, D.;Byun, J.;Baeck, S.;Kong, H.;Park, S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.284-286
    • /
    • 1993
  • Software and hardware for cochlear implant system have been developed to create a speech signal processing system which, in real-time, extracts model parameter including formants, pitch, amplitude information. The system is based on the Texas Instruments TMS320 family. In hardware, computer interface has been desisted and implemented that allows presentation of biphasic pulse stimuli to patients with the hearing handicapped. The host computer sends a stream of bytes to the parallel port. Upon receipt of the data the interface generates the appropriate burst sequence that is delivered to the patient's external transmitter coil. The coded information is interpreted by the Nucleus-22 internal receiver that delivers the pulse to the specified electrodes at the specified amplitude and pulse width.

  • PDF

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

Functional Characteristics of Neutral Amino Acid Transporter in Opossum Kidney (OK) Cells

  • Woo, Jae-Suk;Park, Moon-Hwan;Oh, Sae-Ok;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.185-193
    • /
    • 1997
  • The characteristics of $Na^+$-dependent cycloleucine uptake was investigated in OK cells with regard to substrate specificity and regulation by protein kinase C (PKC). Inhibition studies with different synthetic and natural amino acids showed a broad spectrum affinity to neutral amino acids regardless of their different side chains including branched or aromatic, indicating that the $Na^+$-dependent cycloleucine uptake in OK cells is mediated by System $B^o$ or System $B^o$-like transporter rather than the classical System A or ASC. Phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate, but not $4{\alpha}-PMA$ elicited a time-dependent biphasic stimulation of $Na^+$-dependent cycloleucine uptake, which produced early transient peak at 30 min and late sustained peak at 180min. Both the early and late stimulations by PMA were due to an increase in Vmax and not due to a change in Km. PKC inhibitors blocked both the early and late stimulation by PMA, while protein synthesis inhibitors blocked the late stimulation only. These results suggest the existence and regulation by PKC of System $B^o$ or System $B^o$-like broad spectrum transport system for neutral amino acids in OK cells.

  • PDF

Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the Activity of Autonomic Nervous System and Postprandial Blood Glucose Levels (경피적 귀 미주신경 자극이 자율신경계의 활동 및 식후 혈당 변화에 미치는 영향)

  • Hana, Lee;Hyun, Kim;Doyong, Kim;Minjoo, Lee;Seungkwan, Cho;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Transcutaneous auricular vagus nerve stimulation (taVNS) is known to be effective in improving symptoms of numerous diseases such as depression and epilepsy by increasing vagus nerve activity through electrical stimulation. The purpose of this study is to investigate the effect of vagus nerve stimulation on the activity of autonomic nervous system and the changes in postprandial blood glucose levels. Seven healthy adults participated in a non-invasive transcutaneous auricular vagus nerve stimulation experiment. taVNS (25 Hz, 200 ㎲, biphasic pulse) was applied to the cymba concha (taVNS group) or the earlobe (Sham-taVNS group) of the left ear. As autonomic nervous system signals, skin conductance level, skin temperature, and heart rate were recorded during the application of taVNS. Postprandial blood glucose changes due to food intake were recorded at 5 min intervals for 25 minutes after taVNS or sham-taVNS. The taVNS showed a significantly lower skin conductance level than the shamtaVNS (p < 0.05). The increase rate of postprandial blood glucose was significantly lower in the taVNS than in the sham-taVNS (p < 0.05). These results showed that taVNS reduced the activity of the sympathetic nerve system and alleviated early rise in postprandial blood glucose. Although further studies in diabetic patients are needed, this study suggest that taVNS has a potential for clinical use to improve postprandial blood glucose.

Biphasic Mechanical Responses of Rat Thoracic Aorta to Irradiation with $250{\sim}500\;nm$ Light (돼지 관상동맥 및 흰쥐 흉부대동맥에서 자외선 및 가시광선 조사시 파장에 따른 기계적 반응과 Cyclic GMP의 농도변화)

  • Kook, Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.285-290
    • /
    • 1995
  • This study was undertaken to define the varying responses of vascular smooth muscle to different wavelengths of ultraviolet radiation and to relate them to the changes in cyclic GMP contents. The ring preparations of rat thoracic aorta with intact or removed endothelium were irradiated with the ultraviolet or visible light (UVR) of wavelengths in step of 10 nm between 250 and 500 nm from xenon lamp of a spectrofluorometer, and the changes in vascular tension were recorded. For cyclic GMP assay, the preparations, pretreated with phenylephrine as in the tension experinents, were frozen after irradiation and homogenated in trichloroacetic acid. The supernatant was extracted with ether and the cyclic GMP contents were measured with radioimmunoassay. In the endothelium-intact preparations, biphasic responses, vasoconstriction (UVR-contraction) followed by vasodilatation (UVR-dilatation), were observed. The maximal UVR-contraction was observed at 320 nm, while the maximal vasodilatation was elicited at 420 nm. In the endothelium-removed rings, however, only vasodilatation was observed, with the maximal vasodilatation taking place at 370 nm. The cyclic GMP contents were not affected by the Irradiation with 320 nm for 30 sec or 1 min in the endothelium-intact preparations, while it was significantly increased by 380 and 420 nm. In the endothelium-removed preparations, UVR of 370 nm markedly increased the cyclic GMP contents. The present study indicates that the increase in cyclic GMP is closely related to vasodilatation induced by UVR of 420 nm in the endothelium-intact or 370 nm in the denuded preparations, whereas it is not involved in the vasoconstriction induced by UVR of 320 nm in the intact rings, and the mechanism leading to UVR-contraction remains to be clarified. These observations suggest that nitric oxide-cyclic GMP system is closely related to the UVR-dilatation in rat aortic preparation, while it is not involved in the UVR contraction.

  • PDF

Expression of Invertase in Recombinant Saccharomyces cerebisiae Containing SUC2 Gene (SUC2 Gene을 갖는 재조합 Saccharomyces cerebisiae의 Invertase 발현특성)

  • 정상철;장재권;김인규;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.263-268
    • /
    • 1989
  • To maximize the performance of recombinant cell fermentation process through optimizing environmental conditions, the production of invertase from recombinant Saccharomyces cerebisiae Containing SUC2 gene was studied as a model. The recombinant cells showed biphasic growth on glucose. Since the promoter of the SUC2 is regulated by the concentration of glucose in the medium, expression of invertase by recombinant yeast began when the glucose concentration decreased in a range of 0.25-0.4 g/L during the batch culture. Plasmid segregation occured frequently during glucose fermentation, and infrequently during ethanol oxidation. A rapid appearance of invertase activity with glucose was observed under nonaerated condition, and the maximum specific invertase activity was about 1.5 times as high as under aerobic condition, In fed batch culture, when n low level of glucose was continuously supplied to the tormentor after the time of glucose depletion during growth phase, specific and total invertase activity increased about 1.7 and 2.9 fold, respectively, in a batch culture.

  • PDF

Biological Effects of Static Magnetic Fields and ELF-Electromagnetic Field on Microcirculation in Animals

  • Ohkubo, Chiyoji;Okano, Hidyuki;Xu, Shenzhi;Gmitrov, Jraj
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 1999.07a
    • /
    • pp.117-129
    • /
    • 1999
  • Acute effects of locally applied of static magnetic field (SMF) and extremely low frequency electromagnetic field(ELF-EMF) to the cutaneous tissue within a rabbit ear chamber (REC)were evaluated under conscious conditions. Rabbits with the REC were subjected to intravital microscopical investigation by use of microphotoelectric plethysmography(MPPG). There was no dose-response relationship between the extent of vasomotion changes and frequencies(0,20,50, 100Hz)or power levels (1, 5, 10, 25, 50, 100, 200 mT). Under low vascular tone the both fields induce vasodilatation. The effects of SMF (1 mT) on the cutaneous microcirculatory system induced the vasodilatation with enhanced vasomotion under nor-adrenaline-induced high vascular tone as well as the vasoconstriction with reduced vasomotion under acetylcholine-induced low vascular tone. This suggests that the SMF can modulate vascular tone due to the modification of vasomotion biphasically in the cutaneous tissue.

  • PDF

Study on Electric Stimulus Pattern in Cochlear Implant Using a Computer Model (신경모델링을 이용한 인공와우 전기자극 패턴 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.249-255
    • /
    • 2012
  • A cochlear implant system uses charge-balanced biphasic pulses that are known to reduce tissue damage than monophasic pulses. In this study, we investigated effect of pulse pattern on neural responses using a computer model, based on the Hodgkin-Huxley equation. Electric pulse phase, pulse duration, and phase gap have been systematically varied to characterize auditory nerve responses. The results show that neural responses, dynamic range and threshold are represented as a function of stimulus patterns and duration. The results could greatly extend to develop more efficient cochlear implant stimulation.