• Title/Summary/Keyword: biped gait

Search Result 64, Processing Time 0.029 seconds

Control Gait Pattern of Biped Robot based on Human's Sagittal Plane Gait Energy (인간 관절 에너지 분석을 통한 이족로봇의 자연스러운 보행 제어)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained, as proved by the experiments.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

Gait Pattern Generation Algorithm for a Biped Robot with Toes

  • Min, Kwan-Sik;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.4-107
    • /
    • 2002
  • One of the most important functions of a biped robot is to walk naturally like human. For the human being, toe is very important joint in order to walk naturally. Thus, for a biped robot, the existence of toe joint much affects gait pattern generation and contributes to natural walking, which is similar to the human gait or faster walking like running. Since a conventional biped robot has the feet which consist of soles without toes, it seems difficult to walk naturally. For realizing the gait to be similar to human one, toes are necessary to the biped robot. In this paper, the effect of the toe joint for gait pattern generation is studied. In order to find the effect of toe joint, a biped r...

  • PDF

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 최적 걸음새에 관한 연구)

  • 공정식;노경곤;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Walking of a biped robot with compliant ankle joints (순응성 발목 관절을 갖는 두발 로보트의 보행)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF

Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm (유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성)

  • Kwon Ohung;Kang Minsung;Park Jong Hyeon;Choi Moosung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

Real-time Trajectory Adaptation for a Biped Robot with Varying Load

  • Seok, Jin-Wook;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1934-1937
    • /
    • 2005
  • This paper proposes suitable gait generation for dynamic walking of biped robot with varying load in real time. Author proposes the relationship between ZMP(Zero Moment Point) and measurement from FSR(Force Sensing Register). Simplifying this relationship, it is possible to reduce the computational time and control the biped robot in real time. If the weight of the biped robot varies in order to move some object, then joint trajectories of the the biped robot must be changed. When some object is loaded on the biped robot in it's home position, FSRs can measure the variation of weight. Evaluating the relations between varying load and stable gait of the biped robot, it can walk adaptively. This relation enables the biped robot to walk properly with varying load. The simulation is also represented in this paper which shows proposed relationships.

  • PDF

Gait Pattern Generation of S-link Biped Robot Based on Trajectory Images of Human's Center of Gravity (인간의 COG 궤적의 분석을 통한 5-link 이족 로봇의 보행 패턴 생성)

  • Kim, Byoung-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2009
  • Based on the fact that a human being walks naturally and stably with consuming a minimum energy, this paper proposes a new method of generating a natural gait of 5-link biped robot like human by analyzing a COG (Center Of Gravity) trajectory of human's gait. In order to generate a natural gait pattern for 5-link biped robot, it considers the COG trajectory measured from human's gait images on the sagittal and frontal plane. Although the human and 5-link biped robot are similar in the side of the kinematical structure, numbers of their DOFs(Degree Of Freedom) are different. Therefore, torques of the human's joints cannot are applied to robot's ones directly. In this paper, the proposed method generates the gait pattern of the 5-link biped robot from the GA algorithm which utilize human's ZMP trajectory and torques of all joints. Since the gait pattern of the 5-link biped robot model is generated from human's ones, the proposed method creates the natural gait pattern of the biped robot that minimizes an energy consumption like human. In the side of visuality and energy efficiency, the superiority of the proposed method have been improved by comparative experiments with a general method that uses a inverse kinematics.

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.