• Title/Summary/Keyword: biotite granite

Search Result 322, Processing Time 0.025 seconds

Lithogeochemistry on the Dukum and Jeonjuil gold - silver deposits in Southern - western part of Korea (한국(韓國) 남서부(南西部)의 덕음(德蔭)과 전주(全州)-금은광상(金銀鑛床)에 대(對)한 암석지구화학적(岩石地球化學的) 연구(硏究))

  • Yoon, Chung Han;John, Yong Won;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.389-400
    • /
    • 1988
  • Minor elements such as Ag, As, Au, Bi, Cd, Cu, Co, Ni, Pb, Rb, Sb, Sr and Te were analyzed by atomic absorption spectrophotometry and induced coupled plasma spectrophotometry in order to investigate pathfinders for gold in quartz porphyry, granite porphyry and vein materials in Jeonjuil gold - silver mine, and in altered biotite granites and vein materials in Dukum gold - silver mine. In Dukum gold - silver mine, it is observed that Au contents have positive relation with As, Co, and Rb contents, but negative relation with Bi contents in altered biotite granites. Au contents have positive relation with Ag, As, Co and Te contents in vein materials. In Jeonjuil gold - silver mine, it is observed that Cd, Rb, Sr and Te are enriched near ore vein in quartz porphyry and granite porphyry. Au contents have positive relation with As, Cd, Cu, $Fe_2O_3$ and $K_2O$ in vein materials.

  • PDF

Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area (포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학)

  • 윤현수;홍세선;이윤수
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • The study area is mostly composed of Precambrian Gyeonggi gneiss complex, Jurassic Daebo granites, Cretaceous tonalite and dykes, and so on. On the basis of field survey and mineral assemblage, the granites can be divided into three types; biotite granite (Gb), garnet biotite granite (Ggb) and two mica granite (Gtm). They predominantly belong to monzo-granites from the modes. Field relationship and K-Ar mica age data in the surrounding area suggest that intrusive sequences are older in order of Gtm, Ggb and Gb. Gb and Ggb, major study targets, occur as medium-coarse grained rocks, and show light grey and light grey-light pink colors, respectively. Mineral constituents are almost similar except for opaque in Gb and garmet in Ggb. Gb and Ggb have felsic, peraluminous, subalkaline and calc alkaline natures. In Harker diagram, both rocks show moderately negative trends of $TiO_2$, MgO, CaO, $Al_2O_3$, $Fe_2O_3$(t), $K_2O$ and $P_2O_5$ as $SiO_2$ contents increase. Among them, $TiO_2$, MgO and CaO show two linear trends. From the trends and the linear patterns in AFM, Sr-Ba and Rb-Ba-Sr relations, it is likely that they were originated from the same granitic magma and Ggb was differentiated later than Gb. REE concentrations normalized to chondrite value have trends of parallel LREE enrichment and HREE depletion. One data of Ggb showing a gradually enriched HREE trend may be caused by garnet accompaniment. Ggb have more negative Eu anomalies than Gb, suggesting that plagioclase fractionation in Ggb have occurred much stronger than that in Gb. In modal (Qz+Af) vs. Op, Gb and Ggb belong to magnetite-series and ilmenite-series, respectively. From the EPMA results, opaques of Gb are magnetite and ilmenite, and those of Ggb are magnetite-free ilmenite or not observed. Bimodal distribution of magnetic susceptibility reveals two different granites of Gb (332.6 ${mu}SI$) and Ggb (2.3 ${mu}SI$). Based on the paleomagnetic analysis as well as modal analysis, the main susceptibilities of Gb and Ggb reside in magnetite and mafic minerals, respectively. They belong to S-type granite of non-magnetic granite by susceptibility value. In addition, $SiO_2$ contents, $K_2O/Na_2O$, A/CNK molar ratio and ACF diagram support that they all belong to S-type granites.

Petrological Study on the Bulgugsa Acidic Igneous Rocks in Busan Area (부산지역(釜山地域)의 불국사산성화성암류(佛國寺酸性火成岩類)의 암석학적(岩石學的) 연구(硏究))

  • Cha, Moon-Sung
    • Economic and Environmental Geology
    • /
    • v.9 no.2
    • /
    • pp.85-106
    • /
    • 1976
  • The Bulgugsa acidic igneous rocks of the late Cretaceous age are largely distributed in Busan area, which is located in the southeastern corner of the Korean Peninsula. These igneous rocks comprise in ascending order, felsite, dacitic-rhyolitic welded tuffs, granite porphyry and granitic rocks. The former three members represent the early phase of volcanic activities, so that they are named as Jangsan volcanic rocks. The granitic rocks consist of granodiorite, hornblende biotite granite, Kumjongsan granite, fine grained granite, and Daebyen granite, represent the late phase of igneous activities. The Kumjongsan grainte, the largest pluton of the granitic mass, emplaced between two great vertical faults trending NNE. New chemical analyses of 33 rock samples of these acidic rocks are given. Their chemical compositions are generally similar to those of the late Mesozoic acidic igneous rocks of the northern Ashio mountains, and C-Zone granite group of the Ogcheon geosyncline, with their characteristic variation trends of several oxides. Their chemical compositions also show that $Al_2O_3$ is high value, and differentiation index is high, too. Systematically developing joints in Kumjungsan granite are divisible into two types at least. One is the NS-N $20^{\circ}E$ trendirig, $85^{\circ}{\sim}90^{\circ}$ dipping type of joint system which coincides with the trends of distribution of the granite mass and the dikes intruding this granite. Joints of this type may be cooling joints generated as tension cracks. The other is the $N60^{\circ}{\sim}70^{\circ}W$ or $N40^{\circ}{\sim}60^{\circ}E$ trending type of joint systems. It is considered that. joints belonging to this type may be shear joint occurring under the state of south-north tectonic couple acting at the east and west side of the granite mass. Igneous activities of the the Bulgugsa acidic igneous rocks in Busan area was taken place as. follows, formation of the magma reservoir, eruption and intrusion of felsite, consolidation of vents. and increasing vapor pressure in magma reservoir, eruption of pyroclastic flows, caldera collapse, intrusion of granite porphyry, and intrusion of granitic rocks at the latest stage.

  • PDF

Geochronology and Petrogenesis on Orthogneiss in the Bosung-Suncheon area (보성(寶城)-순천(順天) 지역(地域)에 분포(分布)하는 정편마암류(正片麻岩類)의 지질시대(地質時代)와 성인(成因)에 대(對)한 연구(硏究))

  • Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.69-83
    • /
    • 1988
  • Orthogneiss of the study area is meta-igneous complex that composed of granite gneiss, porphyroblastic gneiss and migmatitic gneiss. Migmatitic gneiss produced from granite gneiss and porphyroblastic gneiss by strong ductile shearing. These rocks show mostly gneissic and partly mortar textures by strong regional metamorphism and ductile shearing during several orogenies. $^{40}Ar-^{39}Ar$ incremental-release ages of these rocks have been determined for 1 hornblende. 1 biotite and 3 muscovite concentrates separated from orthogneisses in this area. Ages of regional metamorphism and ductile shearing of these rocks are more than 5 stages(1500 Ma, 260 Ma, 190 Ma, 180-170 Ma and 160 Ma) under $300^{\circ}C$ to $500^{\circ}C$. These rocks had not been nearly effected by Daebo orogeny, because this area is far from Daebo granite bodies. The general trend of major chemical composition and mineral composition of these orthogneisses suggest that these rocks are some series of differentiated products from magma.

  • PDF

Ore and Mineral Paragenesis of Daehwa and Donsan Tungsten-Molybdenum Deposits (대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 광석(鑛石)과 광물공생관계(鑛物共生關係))

  • Park, Hee-In;Choi, Suck-Won;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1985
  • The Daehwa and Donsan tungsten-molybdenum deposits are composed of numerous fissure-filling veins developed in Precambrian gneiss and Cretaceous granite and quartz porphyry. K-Ar age of biotite in granite and that of muscovite in ore veins are $105{\pm}5\;Ma$ and 88.2~88.6 Ma respectively. Occurrence of ore deposits shows that relevant igneous rock is possibly quartz porphyry rather than above mentioned granite in temporal view point. Vein structure and mineralogy suggest that ore veins were formed by continuous vein filling, not by repeated mineralization. Three distinct depositional stages with decreasing age can be devided on the basis of mineral paragenesis and fluid inclusion studies: Stage I, deposition of oxides and silicates; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I.

  • PDF

Mineralogical Study of Sericite in the Daehyun Mine: Formation, Chemistry and Polytype (대현광산 견운모의 생성과정과 화학조성 및 폴리타잎)

  • 이병임;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.69-84
    • /
    • 1998
  • The Daehyun sericite deposit in socheon-myun, Bongwha-gun, Kyungsangbuk-do, Korea, has been formed by the hydrothermal alteration of the Hongjesa granite of Precambrian age, leaving the muscovite granite between ore body and the Hongjesa granite as the wall rock alteration zone. The process of sericitization of granitic rock as well as chemistry and structures of sericites were studied using polarizing microscope, X-ray diffractometer (XRD), electron probe microanalyzer (EPMA) and high resolution transmission electron microscope (HRTEM). There are two genetic types of sericites having different chemistry and structure. The early sericite is of 2M1 polytype and has octahedral composition close to muscovite. It has been formed from the primary muscovite, tourmaline and quartz under a relatively high temperature. The late sericite is of 1M, 2M1 and 3T polytypes and has phengitic composition. It has been formed form feldspar, biotite, muscovite and tourmaline under a relatively low temperature. Chemical analyses show t, the early sericite has less Mg+FeT content and lower Si/AlIV ratio in tetrahedral site than the late sericite.

  • PDF

Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents (에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰)

  • Myeong, Bora;Kim, Jung-Hoon;Woo, Hyeong-Dong;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.439-453
    • /
    • 2018
  • The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and HBGD) granitoids, and regarded that were derived from same parental magma in upper mantle. The hornblende and biotite of AGR as an interstitial phase indicate that influx of F-rich fluid during the crystallization of AGR magma. AGR is enriched LILE (except Sr and Ba) and LREE that indicate the influences for subduction released fluids. The highest HFSE contents and zircon saturation temperature of AGR among the Eocene Gyeongju granitoids may indicate that it was affected by partial melting rather than magma fractionation. These characteristics may represent that the high F contents of AGR was affected by F-rich fluid derived from the subducted slab and partial melting. It corresponds with the results of the REE modeling and the dehydrated fluid component (Ba/Th) modeling showing that AGR (A-type) was formed by the partial melting of BTGR (I-type) with the continual influx of F-rich fluid derived from the subducted slab.

Mineraloty and Genesis of the Sericite Ore from the Samsung Mine Area (삼성광산 일대의 견운모광화작용에 대한 광물학적 및 성인적 연구)

  • Kim Won-Sa;Choi Jun-Kyu
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • The Samsung mine is located in Jeongsan-myeon, Cheongyang-gun, Chungcheongnam-do, and is produces sericite ores. The purpose of this study is to investigate the geology and mineralogy of sericite one and its host-rock together with the alteration processes and age of sericitization. Geological survey, polarizing microscopy, X-ray powder diffraction, electron microprobe analysis, X-ray fluorescent analysis, differential thermal analysis, and K/Ar isotope study have been employed for this study. The mine area is composed of Precambrian granite-gneiss and mica schist, and also Jurassic biotite granite. Serictization has occured within the granite-gneiss, and is interpreted to be formed by hydrothermal alteration. The sericite was formed by the breakdown of orthoclase, plagioclase, and biotite, respectively. With sericitization intensity increase, $SiO_2\;and\;Na_2O$ contents are decreased, while $Al_2O_3\;and\;K_2O$ increased. The formation age of sericite has been determined to be Jurassic, which corresponds well to the intrusion age of the biotite granite nearby.

Petrological Characteristics and Deterioration phenomena of the rocks consisting the Naju-Dongmunoi-Seogdanggan(Stone Stele) (나주동문외석당간 구성암석의 암석학적 특징과 훼손양상)

  • Lee, Sang-Hun
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.57-66
    • /
    • 2006
  • The rock consisting the Naju-Dongmunoi-Seogdanggan (Stone Stele)(Treasure number 49) is biotite granite of medium to coarse grains which might be taken from nearby area. The rock is mainly composed of quartz, plagioclase, alkali feldspar and biotite. Due to strong weathering grail peel-off and surface exfoliation are well developed. The rock surface is changed into pale brown or pale black colors according to weathering, organism and weathering product of iron band. Major deterioration phenomena are grain peel-off, surface exfoliation, cracks and damage which may be originally classified into weathering, effect of weathering product of iron band, organisms, structural unstabilities and impact.

  • PDF

Lithology and Geology of Deokjeok Island, Western Gyeonggi Massif, Central Korea (서부 경기육괴에 위치한 덕적도의 암상과 지질)

  • Aum, Hyun Woo;Kim, Yoonsup;Cheong, Wonseok
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • We investigated the lithology and petrography of granites and metasedimentary rocks in Deokjeok Island at the western margin of the Gyeonggi massif. The major lithology comprises the biotite granite that intrudes all other types of rocks. A minor amount of mylonitized porphyritic granite crops out along the southeastern coast. Metasedimentary rocks in the north are further divided into: (1) sheared quartzite-schist to the northeast; and (2) relatively less-deformed, low-grade metasedimentary rocks to the northwest. The former contains quartz grains showing undulatory extinction and subgrain aggregates as well as minor amount of primary chlorite and biotite in the muscovite-rich matrix. Metamorphic condition belongs to the greenschist facies or the biotite zone. On the other hand, the latter unit consists of meta-conglomerate, meta-sandstone, meta-pelite, and black slate. Regardless of the lithology, the intensity of deformation apparently increases eastward to develop the flow banding of quartz in the shear zone.