• Title/Summary/Keyword: biosynthetic engineering

Search Result 133, Processing Time 0.025 seconds

Plant regeneration and transformation of grape (Vitis labrusca L.) via direct regeneration method (포도 (Vitis labrusca L.)의 직접 재분화 방법을 이용한 식물체 재분화와 형질전환)

  • Kim, Se Hee;Shin, Il Sheob;Cho, Kang Hee;Kim, Dae Hyun;Kim, Hyun Ran;Kim, Jeong Hee;Lim, Sun-Hyung;Kim, Ki Ok;Lee, Hyang Bun;Do, Kyung Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.210-216
    • /
    • 2013
  • Efficient regeneration methods and transformation system are a priority for successful application of genetic engineering to vegetative propagated plants such as grape (Vitis labrusca L.). This research is to establish shoot regeneration system from plant explants for 'Campbell Early', 'Tamnara', 'Heukgoosul', 'Heukbosek' using two types of plant growth regulators supplemented to medium. The highest adventitious shoot regeneration rate of 5% was achieved on a medium containing of Murashige and Skoog (MS) inorganic salts and Linsmaier and Skoog (LS) vitamins, 2 mg/L of TDZ and 0.1 mg/L of IBA. Leaf tissue of 'Campbell Early', was co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, gus gene as reporter gene and resistance to kanamycin as selective agent, the other Agrobacterium strains, GV3101 containing the vector pB7 WG2D carrying with mPAP1-D gene. mPAP1-D is a regulatory genes of the anthocyanin biosynthetic pathway. 'Campbell Early' harboring mPAP1-D gene was readily able to be selected by red color due to anthocyanin accumulation in the transformed shoot. These results might be helpful for further studies to enhance the transformation efficiency in grape.

Studies of vindoline metabolism in Catharanthus roseus cell cultures using deuterium-labeled tabersonine (Catharanthus roseus 세포 배양액에 deuterium이 치환된 tabersonine을 사용한 vindoline 생합성 경로 연구)

  • Lee, Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Vinca alkaloids produced from Catharanthus roseus are one of the most important natural product drugs in treatments of human cancers. These anticancer drugs are derived from coupling of the two monomeric indole alkaloids, catharanthine and vindoline. In order to investigate vindoline biosynthesis, tabersonine-$CD_3$ 1a is synthesized to use as a deuterium labeled precursor, which is distinguished clearly from the natural counterpart. We show that these deuterium labeled tabersonine 1a are successfully incorporated into the vindoline biosynthetic pathway to yield three deuterated vindoline intermediates. 16-Hydroxytabersonine-$CD_3$ (m/z 356) 2a, 16-Methoxytabersonine-$CD_3$ (m/z 370) 3a, 16-Methoxy-2,3-dihydro-3-hydroxytabersonine-$CD_3$ (m/z 388) 4a are produced from the cell suspension culture measured by UPLC/MS at 5 and 13 days after feeding tabersonine. The conversion rates from 1a to 2a and 2a to 3a are fast, whereas that from 3a to 4a is much slower. This indicates that the rate determining step among the first three vindoline biosynthesis is the last step. As a result of the slow conversion rate from 3a to 4a, the accumulation level of 16-Methoxytabersonine-$CD_3$ 3a is significantly increased up to 13 days. The accumulation ratio among 2a, 3a and 4a is 1, 2 and 0.1 at 5 days. However, the peaks of desacetoxyvindoline-$CD_3$ 5a, deacetylvindoline-$CD_3$ 6a and vindoline-$CD_3$ 7a are not found from the cell extracts even after 13 days of incubation which may indicate no presence of their corresponding enzymes.

Studies on the Lipid Metabolism of Soybean during its Germination-(Part 2) Changes on lipoxygenase activity and fatty acid composition in soybean during germination- (대두발아(大豆發芽)중 지질대사(脂質代謝)에 관한 연구-제2보(第2報) Lipoxygenase activity 및 지방산(脂肪酸)의 변화에 관하여-)

  • Shin, Hyo-Sun
    • Applied Biological Chemistry
    • /
    • v.17 no.4
    • /
    • pp.247-256
    • /
    • 1974
  • The Merit variety of soybean (Glycine max L.), harvested in 1971 was germinated in the dark at $21{\sim}25^{\circ}C$ for 10 days. The soybean sprout were divided into cotyledons and seedling axis and subjected to the determination of lipoxygenase activity and fatty acid composition of triglycerides, free fatty acids, phosholipids and crude fat fractions at two-day intervals during the germination periods. The results are summarized as follows 1) The lipoxygenase activity in cotyledons declined sharply after second day, but the activity in seedling axis inclined slightly after second day. However, the decrease of lipoxygenase activity in cotyledons coincided with decrease of linoleic and linolenic acids in cotyledons and increase of lipoxygenase activity in seedling axis coincided with increase of those acids in seedling axis. 2) The iodine value of neutral fat in cotyledons decreased continuously, but the iodine value of the neutral fat in seedling axis remained almost constant. iodine value in cotyeldons was greater than in seedling axis. 3) In the fatty acid composition of triglycerides in cotyledons, palmitic acid did not changes significantly, stearic acid increased continuously, oleic acid changed irregularly, linoleic and linolenic acids continuously decreased significantly. But in the fatty acid composition of triglycerides in seedling axis, palmitic acid remained unchanged, linoleic and linolenic acids slightly increased continuously, stearic and oleic acids changed irregularly. 4) Composition of free fatty acids in cotyledons and seedling axis changed irregularly, suggesting that all fatty acids produced by hydrolysis of triglycerides by lipase are used(or either biosynthetic Purpose or energy Production at random. 5) Fatty acids with odd-numbered carbon chain were not detected in the triglycerides and free fatty acid fractions during the germination periods, suggesting that all fatty acids are utilized as $C_2$-unit in degradation and biosynthesis. 6) The changes of fatty acids composition of Phospholipid in cotyledons and seedling axis during the germination were similar to these of triglyceride fraction.

  • PDF