• 제목/요약/키워드: bioreactor culture

검색결과 301건 처리시간 0.037초

Bioreactor를 이용한 사계성 딸기 기내대량증식과 경제성 (In Vitro Mass Propagation and Economic Effects of Bioreactor Culture in Ever-bearing Strawberry 'Goha')

  • 이종남;김혜진;김기덕;권영석;임주성;임학태;용영록
    • 원예과학기술지
    • /
    • 제28권5호
    • /
    • pp.845-849
    • /
    • 2010
  • 본 실험은 여름딸기 무병묘 대량증식을 위해 bioreactor배양의 증식 및 경제성 효과를 비교하고자 실시하였다. 배양 방법은 반고체, 고체, 현탁배양 및 bioreactor 배양 등 4가지 방법을 이용하였다. 배양 6주 후, 식물체의 초장은 고체배양이 3.6cm로 가장 짧았으며, bioreactor 배양이 8.3cm로 가장 길었다. 생체중과 건물중은 bioreactor 배양이 2,261mg과 525mg으로 다른 배양방법에 비하여 가장 무거웠다. 액아는 반고체, 고체 및 현탁배양은 거의 발생하지 않았으나, bioreactor 배양은 주당 7개의 액아가 발생하였다. 경제성 분석 결과 기본식물 생산 시 bioreactor배양이 303원/주으로 고체배양의 845원/주보다 542원/주 적었다. 따라서 딸기 무병묘 생산 시 bioreactor배양이 대량증식 및 경제적인 면에서 효율적이었다.

새송이버섯 biomass를 위한 최적배양 조건 (Culture Condition for Biomass of Pleurotus eryngii)

  • 김명욱;권오준;우희섭;조영제
    • Applied Biological Chemistry
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2007
  • 새송이버섯의 biomass를 위한 최적조건을 규명한 결과, 균사체 spot 배양을 위한 최적 조건은 PDA배지를 사용하여 24$^{\circ}C$에서 18일 배양 시 최적인 것으로 판단하였으며, 새송이버섯 균사체 Biomass를 위한 bioreactor의 배양 최적조건은 PDMP배지를 사용하여 pH 5.5, 18$^{\circ}C$에서 27일 배양시 reactor의 반응은 최적의 상태를 나타낼 수 있을 것이라 판단되었다. 최적조건에서 bioreactor를 이용한 새송이버섯 균사체의 인공적인 대량 배양이 가능하였으며, bioreactor에서 대량 인공 배양된 균사체를 이용한 새송이버섯 재배 시, 자실체가 형성되어 새송이버섯의 대량생산을 위한 biomass가 가능하였다.

생물반응기를 이용한 잣버섯(Lentinus lepideus)의 균사체 및 수용성 다당체 생산특성 (Production of Mycelia and Water Soluble Polysaccharides from Submerged Culture of Lentinus lepideus in Bioreactor)

  • 안진권;가강현;이위영
    • 한국균학회지
    • /
    • 제35권1호
    • /
    • pp.37-42
    • /
    • 2007
  • 잣버섯 균사체 배양에 적합한 생물반응기는 풍선형의 공기부양식의 생물반응기가, 수용성 다당체의 생산에도 생장이 좋았던 풍선형 공기부양식 생물반응기가 유리한 것으로 나타났다. 배지의 탄소원 농도별에 따른 수용성 세포외 다당체의 생산량은 농도 처리간 차이가 없었으나 수용성 세포내 다당체는 탄소원 농도가 낮은 즉 C/N율이 낮을수록 증가하였다. 잣버섯 균사체는 고농도의 배지 배양조건에서 생물반응기내로 배지 공급형태가 배지량 증가방법보다 배지농도 조절에 의한 연속 배양방법이 우수한 것으로 나타났다.

Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

  • Kim, Youn-Kyu;Park, Seul-Hyun;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.81-89
    • /
    • 2015
  • In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of long-term human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at $36{\pm}1^{\circ}C$, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

Bioreactor를 이용한 담배세포 현탁배양에서 교반형태와 통기량이 미치는 영향 (Effect of Agitation and Aeration Rate on Nicotiana tabacum Suspension Cell Culture in Bioreactors)

  • 이상윤;김동일
    • KSBB Journal
    • /
    • 제14권5호
    • /
    • pp.534-538
    • /
    • 1999
  • 식물세포배양을 위한 bioreactor의 운전조건 최적화를 위해 Nicotiana tabacum 현탁세포를 model system으로 bioreator의 종류, 교반기의 형태, 그리고 통기량에 따른 세포생장을 관찰하였다. Bioreactor로는 stirred tank bioreactor과 airlift bioreactor를 사용하였으며 두가지 배양기 모두 flask에서의 생장보다 낮은 생장을 보였으며 stirred tank bioreactor보다는 airlift bioreator에서 높은 세포농도를 얻을 수 있었다. 교반기의 종류에 따른 세포의 생장은 큰 차이가 없었으나 hollowed paddle impeller를 사용하였을 경우에는 배양기간 동안 세포의 크기가 작게 유지되었다. 통기량을 0.30 vvm으로 유지하는 경우에 가장 좋은 세포생장을 관찰할 수 있었으며 1.0 vvm이상의 통기량에서는 과도한 foam의 형성과 세포의 갈색화 현상을 보이며 세포의 생장도 저해되었다. 또한 통기량이 증가할수록 세포크기지수가 감소하는 결과를 보였다.

  • PDF

Effects of Culture Type and Inoculation Quantity in Bioreactor on Production of Potato Plantlets

  • Choi Ki Young;Son Sung Ho;Lee Joo Hyun;Lee Yong-Beom;Bae Jong Hyang
    • 생물환경조절학회지
    • /
    • 제14권4호
    • /
    • pp.298-301
    • /
    • 2005
  • Potato (Solamum tuberosum 'Dejima') plantlets were investigated on culture type and initial quantity of inoculation in bioreactor and survival rate by hydroponics for mass production. rode stems (1 to 1.5cm in length) of potato plantlets multiplied in vitro were grown for 3 weeks in liquid Murashige and Skoog (MS) medium with sucrose $30 g\; L^{-1}$. When plantlets (80-node inoculation) were raised in 10L balloon type bubble (BB) bioreactor, the healthiest growth of plantlets was obtained from explants cultured in ebb & flow culture with medium supplied periodically 12 times per day. The suitable inoculation quantity of 20L BB bioreactor was 120 pieces of stem segments (mean 2.2g fresh weight) in ebb & flow culture. Number of nodal shoot was eight on the average. In controlled culture room, survival rate of plantlets at 7 days after stem cutting was above $70\%$ when they were acclimatized by hydroponics grown in deep flow and solid medium culture. The highest survival rate of the stem cutting plantlets was in nutrient solution adjusted to EC $1.4dS{\cdot}m^{-1}$. Stem cutting plantlets through one culture could be obtained $670\~900$, when plantlets were grown in ebb & flow culture during 3 weeks using a 20L bioreactor with initial 120 pieces of nodal segments. 11 is possible In do mass production of seedlings cultured in bioreactor and hydroponics.

Improved Optimization of Indirubin Production from Bioreactor Culture of Polygonum tinctorium

  • Chung, Choong Sik;Kim, Kyung Il;Bae, Geun Won;Lee, Youn Hyung;Lee, Hyong Joo;Chae, Young Am;Chung, In Sik
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.109-111
    • /
    • 2000
  • Effect of the two-stage operation and cell concentration on indirubin production was investigated using bioreactor culture of Polygonum tinctorium. Two-stage culture was operated successfully for 110 days without any adverse effects on continuous indirubin production. Maximum indirubin concentration was found to be at 80 mg/bioreactor. Initial cell concentration significantly affected indirubin production. The indirubin production at 29.2% PCV was improved by 845%, compared to that at 5% PCV. For high-density bioreactor culture of P. tinctorium, a maximum production rate of 10.2 mg indirubin/L day was obtained. Indirubin recovery for bioreactor operation was also examined using XAD-2, XAD-4, XAD-7, and solid silicon. XAD-4 was 1.6-fold more effective than that for solid silicon in indirubin recovery.

  • PDF

유동층 생물반응기에서 anthocyanin 생산을 위한 당근의 모상근 배양 (Hairy Root Culture of Daucus carota for Anthocyanin Production in a Fluidized-bed Bioreactor)

  • 김창헌;이승우;정인식
    • Applied Biological Chemistry
    • /
    • 제37권4호
    • /
    • pp.237-242
    • /
    • 1994
  • 유동층 생물반응기에서의 anthocyanin 생산을 위하여 당근의 모상근배양을 검토하여 보았다. 이 생물반응기에서의 모상근의 성장은 2.5배 증가되었지만 anthocyanin 생산은 낮았다. 그러나 유동층 생물반응기에서의 anthocyanin 생산은 fungal elicitor의 처리에 의해 2.3배 향상되었다.

  • PDF

Production of Ethanol Directly from Potato Starch by Mixed Culture of Saccharomyces cerevisiae and Aspergillus niger Using Electrochemical Bioreactor

  • Jeon, Bo-Young;Kim, Dae-Hee;Na, Byung-Kwan;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.545-551
    • /
    • 2008
  • When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The $K_m\;and\;V_{max}$ of the extracellular glucoamylase were 652.3 mg/l of starch and 253.3 mg/l/min of glucose, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g/l potato starch by a mixed culture of A. niger and S. cerevisiae was about 5 g/l in a conventional bioreactor, but was 9 g/l in 5 volts of PEF and about 19 g/l in 4 volts of PEF for 5 days.

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF