• 제목/요약/키워드: bioprocess monitoring

검색결과 34건 처리시간 0.029초

바이오센서 (Biosensors)

  • 김의락
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.423-427
    • /
    • 2000
  • 바이오센서의 구조와 기능 그리고 종류에 대해 소개하였다. 이 분야의 연구가 과거 15년간 각국에서 경쟁적으로 연 구하였으나 glucose sensor가 상품화되 었을 뿐 연구결과를 상 품화한 것은 극히 적은 수였다. 그러나 최근 몇 년간 특히 포켓용 i-STAT point-of-care system의 도입 그리고 surface plasmon resonance와 evanescent wave 측정 장치 의 출현으로 상품화된 바이오샌서의 수가 크게 증가하는 추세에 었다. 이들 중 의료임상과 생물공정 그리고 환경오염 측정용으로 응 용되고 있는 몇 가지 상품에 대하여 약술하였다.

  • PDF

크로마토그래피 담체의 수멍을 검증하기 위한 자동화 미니 크로마토그래피 시스템 개발 (Development of Miniaturized Automatic Chromatography System for validation Study of Chromatographic Resin lifetime)

  • 박재하;서창우
    • KSBB Journal
    • /
    • 제17권4호
    • /
    • pp.326-332
    • /
    • 2002
  • 크로마토그래피 공정 성능 검증의 한 항목인 담체의 수명 검증을 위해 자동화된 미니 크로마토그래피 시스템(MiniValChrom)을 개발하였다. 이 시스템은 크로마토그래피공정의 자동화된 반복수행, 크로마토그래피 각 step의 작동순서 및 공정조건의 자유로운 구성, on-line 실시간 모니터링 및 제어, 여러 담체 수명 검증법의 method file 저장기능 등을 갖추었다. MiniValChrom을 사용하여 BSA와 Cibacron Blue 3G-A를 각각 모델 단백질과 담체로 담체 수명 검증실험을 사례연구로 수행하였다. 담체 수명의 감소는 크로마토그래피 공정을 반복수행하면서 5 cycle 마다 변화하는 HETP값을 측정하여 HETP 값이 1 cm 이상 될 때까지 반복 수행함으로써 담체 수명을 결정할 수 있었다. 본 연구를 통해 개발된 MiniValChrom은 다른 검증 항목이나 multi-product 생산공장 내 크로마토그래피 공정 검증에도 유용하게 쓰일 수 있을 것으로 기대된다.

On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il;Adnan Ritzka;Thomas Scheper
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권3호
    • /
    • pp.156-165
    • /
    • 2004
  • Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

On-line Monitoring of IPTG Induction for Recombinant Protein Production Using an Automatic pH Control Signal

  • Hur Won;Chung Yoon-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권4호
    • /
    • pp.304-308
    • /
    • 2005
  • The response of IPTG induction was investigated through the monitoring of the alkali consumption rate and buffer capacity during the cultivation of recombinant E. coli BL21 (DE3) harboring the plasmid pRSET-LacZ under the control of lac promoter. The rate of alkali consumption increased along with cell growth, but declined suddenly after approximately 0.2 h of IPTG induction. The buffer capacity also declined after 0.9 h of IPTG induction. The profile of buffer capacity seems to correlate with the level of acetate production. The IPTG response was monitored only when introduced into the mid-exponential phase of bacterial cell growth. The minimum concentration of IPTG for induction, which was found out to be 0.1 mM, can also be monitored on-line and in-situ. Therefore, the on-line monitoring of alkali consumption rate and buffer capacity can be an indicator of the metabolic shift initiated by IPTG supplement, as well as for the physiological state of cell growth.

Continuous Water Toxicity Monitoring Using Immobilized Photobacterium phosphoreum

  • Kim, Se-Kwon;Lee, Baek-Seok;Lee, Jeong-Gun;Seo, Hyung-Joon;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.147-150
    • /
    • 2003
  • Water toxicity monitoring based on the continuous cultivation of Photobacterium phorphoreum is presented. Normally, after 10 days of operation, a dark variant, which emits no light, appears and dominates the population, resulting in a rapid decrease in bioluminescence. Therefore, to overcome this problem, a fluidized-bed reactor is used in which alginate-immobilized cells are grown and leaking cells are continuously released into the effluent Experimental results revealed that the dominance of dark variants was suppressed inside the immobilized beads, thereby mitigating the rapid loss of bioluminescence. Plus, a high dilution rate (1.2 h$\^$-1/) prevented the occurrence of other microbial contamination in the reactor The concentration and bioluminescence of the released cells were sufficient to measure the water toxicity for more than 4 weeks.

Toxicity Monitoring of Endocrine Disrupting Chemicals (EDCs) Using Freeze-dried Recombinant Bioluminescent Bacteria

  • Kim, Sung-Woo;Park, Sue-Hyung;Jiho Min;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.395-399
    • /
    • 2000
  • Five different freeze-dried recombinant bioluminescent bacteria were used for the detection of cellular stresses caused by endocrine disrupting chemicals. These strains were DPD2794 (recA::luxCDABE), which is sensitive to DNA damage, DPD2540 (fabA::luxCDABE), sensitive to cellular membrane damage, DPD2511 (katG::luxCDABE), sensitive to oxidative damage, and TV1061 (grpE::luxCDABE), sensitive to protein damage. GC2, which emits bioluminescence constitutively, was also used in this study. The toxicity of several chemicals was measured using GC2. Damage caused by known endocrine disrupting chemicals, such as nonyl phenol, bisphenol A, and styrene, was detected and classified according to toxicity mode, while others, such as phathalate and DDT, were not detected with the bacteria. These results suggest that endocrine disrupting chemicals are toxic in bacteria, and do not act via an estrogenic effect, and that toxicity monitoring and classification of some endocrine disrupting chemicals may be possible in the field using these freeze-dried recombinant bioluminescent bacteria.

  • PDF

흐름주입분석 기술에 의한 글루코우스와 전분의 온라인 모니터링 (On-line Monitoring of Glucose and Starch by a Flow Injection Analysis Technique)

  • 김준홍;박돈희;이종일
    • KSBB Journal
    • /
    • 제16권5호
    • /
    • pp.459-465
    • /
    • 2001
  • 본 연구에서는 생물공정에서 주요 기질로 이용되는 글루코오스와 전분을 온라인 모니터링 하기 이하여 GOD, AMG를 이용한 흐름 주입분석(Flow Injection Analysis : FIA) 기술을 개발하였고, 효소활성 변화를 비교, 고찰하였다. 특히, epoxy 고분자 담체에 고정화된 COD-FIA와 AMG/GOD-FIA 장치의 성능을 조사하였고, FIA의 조작온도, pH, 운반용액의 첨가제, 염 그리고 각종 신진대사물질의 고정화된 GOD, AMG의 활성에 대한 영향을 소형 반응기내 글루코오스와 전분의 농도 변화를 온라인 모니터링하였다. GOD-FIA에 의한 온라인 모니터링 결과는 오프라인 분석과 비교적 잘 일치하였으며, AMG/GOD-FIA에의한 전분 농도의 온라인 모니터링은 단일 효소 반응기를 사용한 경우 두 개의 효소 반응기를 사용한 경우보다 더 효과적임을 알 수 있었다.

  • PDF

Environmental Biosensors for Organochlorines, Cyanobacterial Toxins and Endocrine Disrupting Chemicals

  • Sadik, Omowunmi A.;Ngundi, Miriam M.;Yan, Fei
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.407-412
    • /
    • 2000
  • Environmental biosensors and related techniques for monitoring organochlorines, endocrine disrupting chemicals and cyanobacterial toxins are described. The practical requirements for an ideal environmental biosensor are analyzed. Specific case studies for environmental applications are reported for triazines, chlorinated phenols, PCBs, microcystins, and endocrine disrupting chemicals. A new promising approach is reported for microcystins and alkylphenols that utilize electrooptical detection.

  • PDF

생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발 (Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring)

  • 정창환;손옥재;이종일
    • KSBB Journal
    • /
    • 제32권1호
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

흐름주입분석 기술을 이용한 젖산의 온라인 모니터링

  • 김준홍;이종일;김미선
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.241-243
    • /
    • 2001
  • On-line monitoring technique for the concentration of lactate by a FIA(Flow Injection Analysis) system was studied. The lactate oxidase(LOD) was immboilized on VA-Epoxy carrier and integrated into the FIA system. The pH, buffer flow rate and temperature for the LOD-FIA were optimized, and the effects of salts and metabolites dissolved in the sample on the activity of immobilized enzyme were investigated. The LOD-FIA has been applied to monitor the concentrations of lactate in a simulated bioprocess. The on-line monitoring data by the LOD-FIA agreed with the off-line data measured by a fluorescence spectroscopy well.

  • PDF