• Title/Summary/Keyword: biopolymers

Search Result 130, Processing Time 0.028 seconds

Antomicrobial Activity amd Preservative Dffects of chitosan on cosmetic Products

  • Lee, Bum-Chun;Pyo, Hyung-Bae;Lee, Chung-Wu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.122-127
    • /
    • 1997
  • Chitin and chitosan have been almost neglected until 1960's although they second largest biomass on earth. Chitosan is a partially deacetylated chitin and belongs to the class of cationic biopolymers. We investigated the antimicrobial activity of chitosan as natural preservatives in cosmetic products. Antimicrobial activity of chitosan against some microorganisms was investigated. The results indicated that chitosan had an effectiveness against some bacteria. We found that chitosan had minimum inhibitory concentataions as low as 100 ppm to S. aureus ATCC 6538, E. coli ATCC 1634 and P. aeruginosa KCTC 2004. But there was not effects to Asp. Niger ATCC 1374 at 1,000 ppm. Also, formuias preserved with chitosan have been subjected to preservative efficacy tests to some microorganisms. Formla preserved with 0.5% chitosan had an effective antimicrobial activity against the Gram (+) and Gram (-) bacteria but not fungi. It is possible to dertermine the formulas with chitosan, which would be effective to reduce the artificial preservatives.

  • PDF

Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer

  • Zhao, Hesong;Liu, Zhun;Park, Sang-Hyuk;Kim, Sang-Ho;Kim, Jung-Hyun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1638-1642
    • /
    • 2012
  • A series of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) tri and multiblock copolymers with relatively high molecular weights were synthesized through the coupling reaction between the bis(acyl chloride) of carboxylated PLA and mono or dihydroxy PEG. The coupling reaction and the copolymer structures were monitored by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The melting temperature (Tm) of PEG blocks decreased with the presence of PLA sequences attaching to PEG blocks. The CMC values were determined to be 10-145 mg/L depending on the length of PLA and PEG blocks and the structure of the block copolymers.

Analysis and role of oligosaccharides in milk

  • Ruhaak, L. Renee;Lebrilla, Carlito B.
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.442-451
    • /
    • 2012
  • Milk is an important fluid in glycobiology because it contains a number of short carbohydrate chains either free or as glycoconjugates. These compounds as a class are the most abundant component and benefit the infant by developing and maintaining the infant's gut flora. New and emerging methods for oligosaccharide analysis have been developed to study milk. These methods allow for the rapid profiling of oligosaccharide mixtures with quantitation. With these tools, the role of oligosaccharide in milk is being understood. They further point to how oligosaccharide analysis can be performed, which until now has been very difficult and have lagged significantly those of other biopolymers.

Simultaneous Enrichment of Novel Filamentous-Like Bacterial Population in Lab-Scale Granular Anaerobic Ammonia Oxidation (Anammox) Sequencing Batch Reactor (실험실 규모 입상 혐기성 암모늄 산화 연속회분식 반응조 내의 신종 사상균 동시 농화 배양에 관한 연구)

  • Park, Hongkeun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.377-382
    • /
    • 2013
  • Enriching anammox bacteria (AMX) in a lab-scale granular sequencing batch reactor using local digester centrate, we observed the significant enrichment of the filamentous-like bacterial population. These bacteria were revealed as novel bacterial species (termed CHL) belonging to Chlorobi/Bacteroidetes phyla via Denaturing Gradient Gel Electrophoresis (DGGE). Further, niche differentiation of AMX and CHL quantification was observed in granule and filament biomass, suggesting AMX was dominant in the granule and CHL was dominant in the filament. Therefore, it was confirmed the structural role of CHL was indeed to aid the granule formation of the AMX. In parallel, the physiological role of CHL was suspected to degrade biopolymers in the digester centrate using nitrate as an electron acceptor.

Improvement of Bifidobacterium longum Stability Using Cell-Entrapment Technique

  • Woo, Chang-Jae;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • A cell-entrapment technique using compressed air was applied to Bifidobacterium longum KCTC 3128 for the improvement of bifidobacteria viability. The main cell-entrapment matrix used was alginate, and viability improvement of the B. longum entrapped in alginate lattices was monitored along with the effects of other additional biopolymers. A prerequisite for acquiring consistent results was the uniformity of bead size and cell distribution which was achieved by using compressed air and mixing the cell suspension with sterilized alginate powder, respectively. The viability losses of the B. longum entrapped in alginate beads in the presence of three different substances logarithmically increased in relation to the reaction time, and proportionately decreased with an increased alginate concentration and bead diameter. The strongest improvement in B. longum viability was exhibited with a bead containing 3% alginate and 0.15% xanthan gum.

  • PDF

THE Multiensemble Sampling Method (다중앙상블 표본추출 방법)

  • Han, Kyu-Kwang
    • The Journal of Natural Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • An efficient sampling method of computer simulation is reviewed. Using the method, several thermodynamic states can be investigated at a time in a single simulation. It is due to the ability of the method to explore the relevant parts of configuration space equally for every state being investigated. The method can be used in simulations of complex systems such as biopolymers which are still greatly hampered by the multi-minima problem. In this article I present a brief theoretical review of the method and illustrate how to realize it in the simulations.

  • PDF

Polymers with Phosphodiester Bonds: from Models of Biopolymers to Liquid Membranes and Polymer-Inorganic Hybrids

  • Penczek, Stanislaw
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.89-89
    • /
    • 2006
  • Polyalkylene phosphates - polymers that are built on the repeating unit of the diester of phosphoric acid: -[OP(O)(OH)Oalkylene]-, are known to form backbones of nucleic and teichoic acids. Various synthetic ways will be reported for the synthesis of the bare chains, where "alkylene" in the formula above means mostly two or three methylene groups. Some other structures have also been prepared. Several applications of these polymers are to be discussed, namely as liquid membranes, as components of two-block copolymers (ionic-nonionic diblock dihydrophilic) used as modifiers of CaCO3 crystallization, and as components of the inorganic-polymer hybrid materials. Some other applications in the biomedical field will also be discussed.

  • PDF

Effect of Polyolic Plasticizers on Rheological and Thermal Properties of Zein Resins

  • Oromiehie, A.R.;Ghanbarzadeh, B.;Musavi, S.M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.360-360
    • /
    • 2006
  • Zein protein is one of the best biopolymer for edible film making and polyols are convenient plasticizers for biopolymers. Sorbitol, glycerol and manitol at three levels (0.5, 0.7, 1g/g of zein) were used as plasticizers. Rheological and thermal properties of zein resins were studied for determining their plasticization effectiveness. Sorbitol and glycerol had good plasticizing effects and could decrease viscoelastic modulus of zein resins considerably, but manitol was not as effective as them. Effects of plasticizers on thermal properties of resins were investigated by DSC at -100 to $150^{\circ}C$. No crystallization and melting peaks related to zein resin and plasticizers were observed. Thermograms showed that polyolic plasticizers and zein resin remained a homogeneous material throughout the cooling and heating cycles.

  • PDF

Animal Cell Culture and the Production of Monoclonal Antibody(MAb) Using Biopolymer Membrane (생물고분자 막 형성을 이용한 동물세포 배양 및 단클론항체 생산)

  • 손정화;유선희;김성구
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • Biopolymer membrane was prepared using two oppositely charged natural biopolymers. The biopolymer membrane was used for the encapsulation of two hybridoma cell lines(ATCC CRL-1606, ATCC HB-8852) to produce monoclonal antibodies. In order to reduce the down stream steps, the pre size of the membrane was controlled to retain the monoclonal antibodies in the capsules based on the diffusion experiments with standard proteins. T-flask culture showed cell densities of 8$\times$107 cells/mL and 3$\times$107 cells/mL, and MAb concentrations of 506$\mu$g/mL and 109$\mu$g/mL for encapsulated ATCC CRL-1606 and HB-8852, respectively. Two liter perfusion cultures with encapsulated ATCC HB-8852 were performed to enhance the MAb production. The MAb production of the encapsulated hybridoma increased considerably comparing to the culture using silicon tubing for oxygen transfer.

  • PDF

A rheo-optical investigation of shear-induced morphological changes in biopolymeric blends

  • Puyvelde, P.Van;Antonov, Y.A.;Moldenaers, P.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.115-119
    • /
    • 2002
  • In this paper, a rheo-optical methodology based on small angle light scattering and polarimetry is applied to investigate in-situ and on a time resolved basis the flow-induced structures in aqueous biopolymeric blends. Water-dextran-gelatin is chosen as an example. It is verified to what extent the laws and scaling relations, originally developed for synthetic polymer blends, are valid for the morphology development in this aqueous biopolymeric mixture. It was observed that under low shear rate conditions, the biopolymeric emulsion can be regarded as a conventional emulsion. However, at high shear rates flow induced homogenization occurs.