• Title/Summary/Keyword: biopellet

Search Result 2, Processing Time 0.269 seconds

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

  • Wistara, Nyoman J;Rohmatullah, Moh Arif;Febrianto, Fauzi;Pari, Gustan;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.671-681
    • /
    • 2017
  • Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.

The Characteristics of Biopellet Produced Upon Reactor Configuration in UASB System (UASB 공법에 있어서 반응조의 형상변화에 따른 입상슬러지의 특성에 관한 연구)

  • Min, Kyung Sok;Ahn, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.679-688
    • /
    • 1994
  • Physicochemical and morphological characteristics of biopellets produced in "control" and modified UASB reactor were investigated to compare the reactor performance with regard to the hydrogen partial pressure. The characteristics of biopellet produced in modified UASB reactor operated with high hydrogen partial pressure were better than those of "control" reactor operated with relatively lower hydrogen partial pressure, therefore the hydrogen partial pressure effected greatly on the formation and stability of the biopellet. Furthermore, pellets from the UASB system with modified settler showed a better settleability and biomass holding capacity. The chemical composition of biopellet was distinctively different from that of common bacterial formula, $C_5H_7O_2N$. Biopellets was composed the large fraction of nitrogen in comparison with common anaerobic microbes. These results implicated the existence possibility of polypeptide-type extracellular polymer. The morphological characterization with SEM showed that microorganisms observed at surface of biopellet produced in modified UASB reactor operated with high $P_{H_2}$ condition were very similar in shape and size to the Methanobrevibactor arboriphilus-$H_2$ utilizing methanogen. The microorganisms was distinguished from those of "control" reactor operated with low $P_{H_2}$ condition. From these results, it could be explained the hydrogen partial pressure effects on pelletization mechanism.

  • PDF