• 제목/요약/키워드: biomodification

검색결과 5건 처리시간 0.016초

Abortiporus biennis에 의한 유기용매 리그닌의 생물학적 변환과 환원제 첨가에 따른 구조 변화 (Biomodification of Ethanol Organolsolv Lignin by Abortiporus biennis and Its Structural Change by Addition of Reducing Agent)

  • 홍창영;박세영;김선홍;이수연;유선화;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.124-134
    • /
    • 2016
  • 본 연구에서는 백색부후균 Abortiporus biennis를 이용하여 유기용매 리그닌의 생물학적 변환을 시도함으로써, 생물학적 변환 기작을 이해하고, 상업적 활용을 위해 유기용매 리그닌의 저분자화를 유도하고자 하였다. 질소제한 배지에서 A. biennis는 주로 유기용매 리그닌의 중합반응을 유도하면서, 분자량을 급격히 증가시켰으며, 배양일에 따라 구조적 차이를 야기하였다. 배양 초기, ether 결합의 분해를 통해 phenolic OH 함량이 증가한 반면, 배양 후기에는 ether 결합이 증가함에 따라 phenolic OH 함량이 감소하였다. 이러한 결과를 바탕으로, 유기용매 리그닌의 탈중합을 유도하기 위해 환원제인 ascorbic acid를 첨가하여 유기용매 리그닌의 구조 변화 및 변환 산물을 분석하였다. 결과적으로, 환원제의 첨가에 의해 유기용매 리그닌의 분자량은 소폭 증가하였지만, 환원제 무첨가 실험에 비해 그 증가 폭이 현저히 감소하였다. 또한 배양액 내 리그닌 올리고머의 경우, 배양 10일째 환원제를 첨가한 실험구에서 중량 평균 분자량 381 Da, phenolic OH 함량 38.63%을 나타냈으며, 이는 저분자화된 형태로 상업적 활용 가치가 높다고 사료된다. 결론적으로, A. biennis의 효소 시스템은 유기용매 리그닌의 분해보다 중합을 야기하였으며, 환원제의 첨가를 통해 배양액 내 리그닌 올리고머의 저분자화 및 phenolic OH 함량 증가를 유도할 수 있었다.

Is dentin biomodification with collagen cross-linking agents effective for improving dentin adhesion? A systematic review and meta-analysis

  • Julianne Coelho Silva;Edson Luiz Cetira Filho;Paulo Goberlanio de Barros Silva;Fabio Wildson Gurgel Costa;Vicente de Paulo Aragao Saboia
    • Restorative Dentistry and Endodontics
    • /
    • 제47권2호
    • /
    • pp.23.1-23.18
    • /
    • 2022
  • Objectives: The aim of this investigation was to evaluate the effectiveness of collagen cross-linking agents (CCLAs) used in combination with the adhesive technique in restorative procedures. Materials and Methods: In this systematic review, the authors followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. An electronic search was performed using PubMed, Scopus, Web of Science, Cochrane Library, LILACS, and DOSS, up to October 2020. The gray literature was also researched. Only randomized clinical trials were selected. Results: The selection process yielded 3 studies from the 838 retrieved. The addition of CCLAs in the retention of restorations increased the number of events. The postoperative sensitivity scores and marginal adaptation scores showed no significant difference between the CCLA and control groups, and the marginal pigmentation scores showed a significant increase in the CCLA group. There were no caries events in any group throughout the evaluation period. Conclusions: This systematic review showed that there is no clinical efficacy to justify the use of CCLAs in the protocols performed.

Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface

  • Isabella Rodrigues Ziotti;Vitoria Leite Paschoini;Silmara Aparecida Milori Corona;Aline Evangelista Souza-Gabriel
    • Restorative Dentistry and Endodontics
    • /
    • 제47권3호
    • /
    • pp.28.1-28.12
    • /
    • 2022
  • Objectives: Metalloproteinase-inhibiting agents, such as chitosan, can prevent collagen degradation in demineralized dental substrates, thereby improving the adhesive interface. This study evaluated the bond strength (BS) and chemical and morphological characterization of the adhesive interface after applying chitosan solution to demineralized dentin. Materials and Methods: The 80 third molars were selected. Forty teeth underwent caries induction using the pH cycling method. The teeth were divided according to the treatment: distilled water (control) and 2.5% chitosan solution. The surfaces were restored using adhesive and composite resins. Half of the specimens in each group were aged, and the other half underwent immediate analyses. The teeth were sectioned and underwent the microtensile bond strength test (µTBS), and chemical and morphological analyses using energy-dispersive spectroscopy and scanning electron microscopy, respectively. Data analysis was performed using 3-way analysis of variance. Results: For µTBS, sound dentin was superior to demineralized dentin (p < 0.001), chitosan-treated specimens had higher bond strength than the untreated ones (p < 0.001), and those that underwent immediate analysis had higher values than the aged specimens (p = 0.019). No significant differences were observed in the chemical or morphological compositions. Conclusions: Chitosan treatment improved bond strength both immediately and after aging, even in demineralized dentin.

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • 제40권3호
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.

다양한 치주 골내낭과 이개부 병변의 처치를 위한 $BBP^{(R)}$ 이식재의 임상적 효과 ($BBPY^{(R)}$ graft for periodontal intrabony defects and molar furcation lesions: Case Report)

  • 김명진;이주연;김성조;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.97-102
    • /
    • 2008
  • Purpose: Periodontal intrabony defects have great deal of importance since they contribute to the development of periodontal disease. Current treatment regimens for intrabony defects involve grafting of numerous bony materials, GTR using biocompatible barriers, and biomodification of root surface that will encourage the attachment of connective tissue. Xenograft using deproteinized bovine bone particles seems to be very convenient to adjust because it doesn't require any donor sites or imply the danger of cross infections. These particles are similar to human cancellous bone in structure and turned out to be effective in bone regeneration in vivo. We here represent the effectiveness of grafting deproteinized bovine bone particles in intrabony defect and furcation involvements that have various numbers of bony walls. Materials and methods: Open flap debridement was done to remove all root accretions and granulation tissue from the defects within persisting intrabony lesions demonstrating attachment loss of over 6mm even 3 months after nonsurgical periodontal therapy have been completed. Deproteinized bovine bone particles($BBP^{(R)}$, Oscotec, Seoul) was grafted in intrabony defects to encourage bone regeneration. Patients were instructed of mouthrinses with chlorohexidine-digluconate twice a day and to take antibiotics 2-3 times a day for 2 weeks. They were check-up regularly for oral hygiene performance and further development of disease. Probing depth, level of attachment and mobility were measured at baseline and 6 months after the surgery. The radiographic evidence of bone regenerations were also monitored at least for 6 months. Conclusion: In most cases, radio-opacities increased after 6 months. 2- and 3-wall defects showed greater improvements in pocket depth reduction when compared to 1-wall defects. Class I & II furcation involvements in mandibular molars demonstrated the similar results with acceptable pocket depth both horizontally and vertically comparable to other intrabony defects. Exact amount of bone gain could not be measured as the re-entry procedure has not been available. With in the limited data based on our clinical parameter to measure pocket depth reduction following $BBP^{(R)}$ grafts, it was comparable to the results observed following other regeneration techniques such as GTR.