• 제목/요약/키워드: biomimetic method

검색결과 68건 처리시간 0.025초

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어 (Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

Photorealistic Ray-traced Visualization Approach for the Interactive Biomimetic Design of Insect Compound Eyes

  • Nguyen, Tung Lam;Trung, Hieu Tran Doan;Lee, Wooseok;Lee, Hocheol
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.699-710
    • /
    • 2021
  • In this study, we propose a biomimetic optical structure design methodology for investigating micro-optical mechanisms associated with the compound eyes of insects. With these compound eyes, insects can respond fast while maintaining a wide field of view. Also, considerable research attention has been focused on the insect compound eyes to utilize these benefits. However, their nano micro-structures are complex and challenging to demonstrate in real applications. An effectively integrated design methodology is required considering the manufacturing difficulty. We show that photorealistic ray-traced visualization is an effective method for designing the biomimetic of a micro-compound eye of an insect. We analyze the image formation mechanism and create a three-dimensional computer-aided design model. Then, a ray-trace visualization is applied to observe the optical image formation. Finally, the segmented images are stitched together to generate an image with a wide-angle; the image is assessed for quality. The high structural similarity index (SSIM) value (approximately 0.84 to 0.89) of the stitched image proves that the proposed MATLAB-based image stitching algorithm performs effectively and comparably to the commercial software. The results may be employed for the understanding, researching, and design of advanced optical systems based on biological eyes and for other industrial applications.

생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션 (Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper)

  • 장상동;김흥수;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

진주조개를 모방한 생체모방 복합재료의 저속충격 해석 (Analysis of Low Velocity Impact on Biomimetic Composites Mimicking Nacre)

  • 조승운;범현규
    • Composites Research
    • /
    • 제23권4호
    • /
    • pp.1-6
    • /
    • 2010
  • 진주조개를 모방한 생체모방 복합재료의 저속충격 하에서의 동적 거동에 대해 연구하였다. 이러한 복합재료는 단백질과 미네랄 층이 계층구조를 이루고 있다. 유한요소해석을 사용하여 복합재료의 충격거동을 해석하였다. 복합재료의 계층구조가 동적 거동에 미치는 영향을 고찰하였다. 생체모방구조물은 계층구조의 차수가 높아짐에 따라 저속충격에 대해 충격지점에서 구조물이 받는 최대 응력과 변위, 접촉하중을 감소시킨다.

생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션 (Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper)

  • 장상동;김재환;김흥수
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Roll-to-Roll (R2R) Fabrication of Micro Pillar Array for Biomimetic Functionalization of Surface

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • 제23권1호
    • /
    • pp.54-59
    • /
    • 2014
  • The roll-to-roll (R2R) fabrication method to make micro-scale pillar arrays for biomimetic functionalization of surfaces is presented. Inspired by the micro-structure of plants in nature, a surface with a synthetic micro-scale pillar array is fabricated via maskless photolithography. After the surface is SAM (self-assembled monolayer) coated with trichlorosilane in a vacuum desiccator, it displays a hydrophobic property even in R2R replicas of original substrate, whose properties are further characterized using various pitches and diameters. In order to perform a comparison between the original micro-pattern and its replicas, surface morphology was analyzed using scanning electron microscopy and wetting characteristics were measured via a contact angle measurement tool with a $10{\mu}L$ water droplet. Efficient roll-to-roll imprinting for a biomimetic functionalized surface has the potential for use in many fields ranging from water repelling and self-cleaning to microfluidic chips.

생체효소 유사물질로서의 시클로덱스트린의 작용- 시클로덱스트린으로 포접된 아스피린의 가수분해 촉매작용- (Cyclodextrin as a Biomimetic Model Enzyme- the Catalysis of Aspirin Hydrolysis Included by Cyclodextrins)

  • 최희숙
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권4호
    • /
    • pp.231-236
    • /
    • 1991
  • The molecular nature of aspirin hydrolysis was studied using cyclodextrin as a biomimetic model for esterase. Cyclodextrin was selected for this purpose because it meets the necessary requirements for the hydrolysis study, Dissociation constants and catalytic rates were obtained under alkaline conditions by the kinetic method.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

돌고래 휘슬을 이용한 지연시간 기반 생체 모방 통신 기법 (A biomimetic communication method based on time shift using dolphin whistle)

  • 이호준;안종민;김용철;이상국;정재학
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.580-586
    • /
    • 2019
  • 본 논문에서는 은밀하게 통신 신호를 전송하기 위해 돌고래 휘슬음을 모방한 통신 기법을 제안하였다. 기존의 CSS(Chirp Spread Spectrum) 변조 기법은 돌고래 휘슬음을 정해진 시간 단위에 따라 여러 슬롯으로 나누고 각 슬롯에 상향 및 하향 처프 신호를 통해 변조하는 기법이다. 이에 따라 본래의 돌고래 휘슬음과의 시간-주파수 특성 차이가 발생하게 되어 모방 성능이 저하된다. 본 논문에서는 이러한 왜곡을 제거하기 위해 지연 시간을 기반으로 하는 변조 기법을 제안하였다. 전산 모의실험 결과 기존의 CSS 변조 기법에 비해 제안 방법의 비트오류율 성능이 약 3.5 dB ~ 8 dB 우수하였으며 시간-주파수 영역에서의 상호 상관도를 통한 모방 성능 평가에서도 CSS 변조 기법에 비해 우수한 것을 보였다.