• Title/Summary/Keyword: biomedical laboratory

Search Result 2,752, Processing Time 0.026 seconds

Composition for the Immunity Stimulatory Activity Comprising Calystegia dahuricus (Herb.) Choisy Water Extract

  • Jeong, Myeongguk;Kwon, Hyeokjin;Jeong, Seohye;Seo, Yerin;Kim, Minguk;Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.206-210
    • /
    • 2022
  • Calystegia dahurica (Herb.) Choisy is a natural product that has not been studied for efficacy or active ingredients. The purpose of this study is to investigate the activation effect of natural killer cells using a natural extract composition based on Calystegia dahurica (Herb.) Choisy extract (CDCE). We evaluated the activity of natural killer cells in natural products using PBMCs from healthy participants. All natural products were extracted with 50% ethanol. Based on the results of the cell viability assay, PBMCs of healthy participants were treated with extracts at various concentrations. Then, analysis was performed using flow cytometry to measure the cd107a surface expression of natural killer cells. As a result, treatment with a single extract of PBMCs increased the expression of cd107a in a concentration-dependent. Furthermore, it was confirmed that the treatment of the extract composition showed the highest expression of cd107a. In conclusion, it is expected that the extract composition containing CDCE according to this study can be used for prevention or treatment of cancer cells, tumor cells, and immune diseases.

Clinical Evaluation of Human Papillomavirus DNA Genotyping Assay to Diagnose Women Cervical Cancer

  • Kim, Sung-Hyun;Lee, Dong-Sup;Kim, Yeun;Kim, Gee-Hyuk;Park, Sang-Jung;Choi, Yeon-Im;Kim, Tae-Ue;Park, Kwang-Hwa;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2012
  • In this study, we evaluated the human papillomavirus (HPV) genotyping test called MolecuTech REBA HPV-$ID^{(R)}$ (YD Diagnostics, Seoul, Korea) for 704 women who also had cervical cytological evaluations by Thin Prep. The infection rate of high-risk HPV genotypes was 56.6% in patients with normal cytology, 59.8% in those with benign, low-grade squamous intraepithelial lesions, 51.4% in those with atypical squamous cells of uncertain significance, 92.3% in those with high-grade squamous intraepithelial lesions, and 94.1% in those with squamous cell carcinoma or adenocarcinoma. HPV 16 was the most common genotype detected in any lesion, followed by HPV 53, 58, 33, 52, 45, 31, and 35, in order. The HPV DNA test with PCR-REBA is a very highly sensitive, but less specific, method. The infection rates and HPV genotype distribution of non-Korean people versus people from South Korea showed regional differences.

Characterization of Matrix Metalloproteinase Expression in Triglyceride Treated THP-1 Macrophages

  • Cho, Yoonjung;Lim, Jaewon;Lee, Dong Hyun;Jung, Byung Chul;Lee, Min Ho;Jung, Dongju;Kim, Yoon Suk;Kim, Tae Ue;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Elevated blood triglyceride (TG) levels correlate with development of atherosclerosis suggesting that TG may promote the development of this disease. During atherosclerosis, TG is taken up by tissue macrophages which result in dramatic changes in various secreted factors. One such factor is the family of matrix metalloproteases (MMP) which are involved in tissue remodeling during both physiological and pathological processes. In this study, we examined the MMP expression profile in PMA-differentiated THP-1 macrophages treated with TG. We found that TG-treated THP-1 macrophages showed decreased expression of MMP-3, MMP-7, MMP-8 and MMP-9 in a time- and dose-dependent manner. In contrast, expression of MMP-1, MMP-2, and MMP-10 remained relatively unchanged after TG treatment. In addition, we found that expression of select MMPs was affected by various inhibitors of signaling pathways. In particular, expression of MMP-3 was slightly recovered by cRAF and PLC signaling pathway inhibitors. These data suggests a possible role of MMPs in macrophages during TG-induced atherosclerosis.

Biomedical Laboratory: Its Safety and Risk Management

  • Tun, Tin
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Biomedical laboratory is full of risks. Risk could be biological, chemical, radioactive, mechanical, physical, fire and electrical. All possible risks need to be identified, evaluated and controlled. A risk management system must be in place to prevent accident or loss of lives and to improve overall workplace safety and productivity. Safety in laboratory is a combination of appropriate risk management system, engineering controls and technical facilities, administrative controls and safety procedures and practices. Laboratory safety culture must be developed so that exposure to hazards for laboratory personnel, community and environment will be minimized or eliminated. In this review, importance of safety in a biomedical laboratory and risk management will be discussed.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Protective Effect of Aqueous Extract from Erigeron annuus Against Cell Death Induced by Free Radicals

  • Myeongguk Jeong;Hyeokjin Kwon;Youngdon Ju;Go-Eun Choi;Kyung-Yae Hyun
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.307-311
    • /
    • 2022
  • The extract of EA lacks studies showing its efficacy other than that it contains caffeic acid, an active compound that has antioxidant and neuroprotective effects on nerve cells. Therefore, in this study, we attempted to determine the effectiveness of EA extraction. In this study, we performed a DPPH assay to determine the antioxidant potential of EA. And then, the cytotoxic concentration of EA in HaCaT keratinocytes was determined, and the antioxidant effect was determined by measuring the malondialdehyde (MDA). The results of DPPH, a chemical antioxidant assay, clearly demonstrated the antioxidant capacity of EA extracted with distilled water. In addition, cell-based assays provide useful information on the protective effect of EA on oxidative stress-induced apoptosis.

Inhibitory Effects of Rice Bran Water Extract Fermented Lactobacillus plantarum due to cAMP-dependent Phosphorylation of VASP (Ser157) on human Platelet Aggregation

  • Kim, Hyun-Hong;Lee, Dong-Ha;Hong, Jeong Hwa;Ingkasupart, Pajaree;Nam, Gi Suk;Ok, Woo Jeong;Kim, Min Ji;Yu, Young-Bin;Kang, Hyo-Chan;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.103-114
    • /
    • 2015
  • In this study, we investigated the effect of rice bran water extract fermented with Lactobacillus plantarum KCCM-12116 (RBLp) on ADP ($20{\mu}M$)-, collagen ($10{\mu}g/mL$)-, and thrombin (0.2 U/mL)-stimulated platelet aggregation. RBLp dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation, with $IC_{50}$ values of 501.1, 637.2, and > $2,000{\mu}g/mL$, respectively. The platelet aggregation induced by ADP plus RBLp ($750{\mu}g/mL$) was increased by the adenylate cyclase inhibitor, SQ22536, and the cAMP-dependent protein kinase (A-kinase) inhibitor, Rp-8-Br-cAMPS. Treatment with RBLp increased the phosphorylation of VASP ($Ser^{157}$), an A-kinase substrate, which was also inhibited by SQ22536 and Rp-8-Br-cAMPS. It is thought that the RBLp-induced increases in cAMP contributed to the phosphorylation of VASP ($Ser^{157}$), which in turn resulted in an inhibition of ADP-induced platelet aggregation, thereby indicating that RBLp has an antiplatelet effect via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). Thus, RBLp may have therapeutic potential for the treatment (or prevention) of platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.