• 제목/요약/키워드: biomedical implants

검색결과 104건 처리시간 0.025초

Novel Hybrid Hydroxyapatite Spacers Ensure Sufficient Bone Bonding in Cervical Laminoplasty

  • Tanaka, Nobuhiro;Nakanishi, Kazuyoshi;Kamei, Naosuke;Nakamae, Toshio;Kotaka, Shinji;Fujimoto, Yoshinori;Ochi, Mitsuo;Adachi, Nobuo
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1078-1084
    • /
    • 2018
  • Study Design: Prospective observational study. Purpose: This prospective analysis aimed to evaluate the efficacy and bone-bonding rate of hybrid hydroxyapatite (HA) spacers in expansive laminoplasty. Overview of Literature: Various types of spacers or plates have been developed for expansive laminoplasty. Methods: Expansive open-door laminoplasty was performed in 146 patients with cervical myelopathy; 450 hybrid HA spacers and 41 autogenous bone spacers harvested from the spinous processes were grafted into the opened side of each lamina. The patients were followed up using computed tomography (CT), and their bone-bonding rates for hybrid HA and autogenous spacers, bone-fusion rates of the hinges of the laminae, and complications associated with the implants were then examined. Results: Clinical symptoms significantly improved in all patients, and no major complications related to the procedure were noted. The hybrid HA spacers exhibited sufficient bone bonding on postoperative CT. The hinges completely fused in over 95% patients within 1 year of the procedure. Only 4 spacers (0.9%) developed lamina sinking, and most expanded laminae maintained their positions without sinking or floating throughout the follow-up period. Conclusions: Hybrid HA spacers contributed to high bone-fusion rates of the spacers and hinges of the laminae, and no complications were associated with their use. Cervical laminoplasty with these spacers is safe and simple, and it yields sufficient fixation strength while ensuring sufficient bone bonding during the immediate postoperative period.

Fabrication and Characterization of Novel Electrospun PVPA/PVA Nanofiber Matrix for Bone Tissue Engineering

  • Franco, Rose-Ann;Nguyen, Thi Hiep;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.51.2-51.2
    • /
    • 2011
  • A novel electrospun nanofiber membrane was fabricated using combined poly (vinylphosphonic acid) (PVPA) and polyvinyl alcohol (PVA) intended for bone tissue engineering applications. PVPA is a proton-conducting polymer used as primer for bone implants and dental cements to prevent corrosion and brush abrasion. The phosphonate groups of PVPA have the ability to crosslink and attach itself to the hydroxyapatite surface facilitating faster integration of the biomaterial to the bone matrix. PVA was combined with PVPA to provide hydrophilicity, biocompatibility and improve its spinnability. To improve its mechanical strength, PVPA/PVA and neat PVA mixtures were combined to produce a multilayer scaffold. The physical and chemical properties of the of the fabricated matrix was investigated by SEM and TEM morphological analyses, tensile strength test, XRD, FT-IR spectra, swelling behavior and biodegradation rates, porosity and contact angle measurements. Biocompatibility was also examined in vitro by cytotoxicity and cell proliferation studies with MTT assay and cell adhesion behavior by SEM and confocal microscopy.

  • PDF

The cumulative survival rate of dental implants with micro-threads: a long-term retrospective study

  • Dong-Hui Nam;Pil-Jong Kim;Ki-Tae Koo;Yang-Jo Seol;Yong-Moo Lee;Young Ku;In-Chul Rhyu;Sungtae Kim;Young-Dan Cho
    • Journal of Periodontal and Implant Science
    • /
    • 제54권1호
    • /
    • pp.53-62
    • /
    • 2024
  • Purpose: This study aimed to evaluate the long-term cumulative survival rate (CSR) of dental implants with micro-threads in the neck over a 10-year follow-up period and to examine the factors influencing the survival rate of dental implants. Methods: This retrospective study was based on radiographic and dental records. In total, 151 patients received 490 Oneplant® dental implants with an implant neck micro-thread design during 2006-2010 in the Department of Periodontology of Seoul National University Dental Hospital. Implant survival was evaluated using Kaplan-Meier analysis. Cox proportional hazard regression analysis was used to identify the factors influencing implant failure. Results: Ten out of 490 implants (2.04%) failed due to fixture fracture. The CSR of the implants was 97.9%, and no significant difference was observed in the CSR between external-and internal-implant types (98.2% and 97.6%, respectively, P=0.670). In Cox regression analysis, 2-stage surgery significantly increased the risk of implant failure (hazard ratio: 4.769, P=0.039). There were no significant differences in influencing factors, including sex, age, implant diameter, length, fixture type, location, surgical procedure, bone grafting, and restoration type. Conclusions: Within the limitations of this retrospective study, the micro-thread design of the implant neck was found to be favorable for implant survival, with stable clinical outcomes.

Application of low-crystalline carbonate apatite granules in 2-stage sinus floor augmentation: a prospective clinical trial and histomorphometric evaluation

  • Nakagawa, Takayuki;Kudoh, Keiko;Fukuda, Naoyuki;Kasugai, Shohei;Tachikawa, Noriko;Koyano, Kiyoshi;Matsushita, Yasuyuki;Sasaki, Masanori;Ishikawa, Kunio;Miyamoto, Youji
    • Journal of Periodontal and Implant Science
    • /
    • 제49권6호
    • /
    • pp.382-396
    • /
    • 2019
  • Purpose: The purpose of this study was to elucidate the efficacy and safety of carbonate apatite (CO3Ap) granules in 2-stage sinus floor augmentation through the radiographic and histomorphometric assessment of bone biopsy specimens. Methods: Two-stage sinus floor augmentation was performed on 13 patients with a total of 17 implants. Radiographic assessment using panoramic radiographs was performed immediately after augmentation and was also performed 2 additional times, at 7±2 months and 18±2 months post-augmentation, respectively. Bone biopsy specimens taken from planned implant placement sites underwent micro-computed tomography, after which histological sections were prepared. Results: Postoperative healing of the sinus floor augmentation was uneventful in all cases. The mean preoperative residual bone height was 3.5±1.3 mm, and this was increased to 13.3±1.7 mm by augmentation with the CO3Ap granules. The mean height of the augmented site had decreased to 10.7±1.9 mm by 7±2 months after augmentation; however, implants with lengths in the range of 6.5 to 11.5 mm could still be placed. The mean height of the augmented site had decreased to 9.6±1.4 mm by 18±2 months post-augmentation. No implant failure or complications were observed. Few inflammatory cells or foreign body giant cells were observed in the bone biopsy specimens. Although there were individual differences in the amount of new bone detected, new bone was observed to be in direct contact with the CO3Ap granules in all cases, without an intermediate layer of fibrous tissue. The amounts of bone and residual CO3Ap were 33.8%±15.1% and 15.3%±11.9%, respectively. Conclusions: In this first demonstration, low-crystalline CO3Ap granules showed excellent biocompatibility, and bone biopsy showed them to be replaced with bone in humans. CO3Ap granules are a useful and safe bone substitute for two-stage sinus floor augmentation.

골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가 (Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design)

  • 박흥석;전흥재;윤인찬;이문규;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권3호
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

실리콘겔 인공유방의 기계적 및 물리화학적 특성에 대한 연구 (Study for Mechanical and Physicochemcial Properties of Silicone Gel Filled Mammary Implants)

  • 백홍;장동혁;송정민;이승영;서무엽;박길종;맹은호
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권2호
    • /
    • pp.89-97
    • /
    • 2012
  • The purpose of this study is to develop the guideline of the physicochemical and mechanical properties evaluation for silicone gel filled breast implants. First of all, the use and development status for silicone gel filled breast implants were investigated, and then, standard and criteria about performance evaluation established by the international organizations such as ASTM, FDA guidance and ISO were examined. To evaluate the mechanical properties, data research and testing for breaking strength, elongation, tensile set, joint intensity, silicone gel cohesion, weight loss from heating, static rupture resistance, impact resistance test, fatigue test, and gel bleed were performed. On the other hand, to evaluate the physicochemical properties, volatile matter, extent of cross linking, heavy metals, and extractable were analyzed. In this study, results for general function, mechanical properties and physicochemical properties were examined and reviewed for the accordance with international standard, and objective and standardized guideline was provided.

유방전용감마카메라에서 유방 보형물이 영상에 미치는 영향에 관한 고찰 (A Study on Effect of the Image Applying to Breast Implants in Breast Specific Gamma Imaging)

  • 이주영;이태수;박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권1호
    • /
    • pp.33-38
    • /
    • 2018
  • There are limits to check the lesion as inserting a breast implant patients. So the application of BSGI based on Nuclear Medicine examination has increased. In this study, therefore we confirmed the effect of the image applying to breast implants in Breast Specific Gamma Imaging. We utilized Dilon 6800 BSGI scanner and developed the phantom. The self-development phantom was a rectangular shape of $230{\times}190{\times}80mm$ size and had 5 spheres which consisted of diameters of 10, 13, 17, 22, 28 mm in central part. We injected $^{99m}TcO_4$ into the self-development phantom in the proportion of four to one and made each additional phantom filled with 0.9 % sodium chloride, silicon and paraffin. Each additional phantom was placed between detector and self-development phantom. Each image was acquired five times depending on the type and thickness of the additional phantom. Statistical analysis with SPSS ver.18 was applied. In the test of variation according to the thickness of all additional phantoms, as the phantoms which 0.9% sodium chloride, silicon and paraffin increased, the attenuation variation was higher(P<0.005). There was no significant difference in the attenuation variation and the quality of image for type of the additional phantom. Therefore, if the effect of the image applying to breast implants in Breast Specific Gamma Imaging is confirmed, the higher diagnostic value can be achieved.

A pilot study using machine learning methods about factors influencing prognosis of dental implants

  • Ha, Seung-Ryong;Park, Hyun Sung;Kim, Eung-Hee;Kim, Hong-Ki;Yang, Jin-Yong;Heo, Junyoung;Yeo, In-Sung Luke
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권6호
    • /
    • pp.395-400
    • /
    • 2018
  • PURPOSE. This study tried to find the most significant factors predicting implant prognosis using machine learning methods. MATERIALS AND METHODS. The data used in this study was based on a systematic search of chart files at Seoul National University Bundang Hospital for one year. In this period, oral and maxillofacial surgeons inserted 667 implants in 198 patients after consultation with a prosthodontist. The traditional statistical methods were inappropriate in this study, which analyzed the data of a small sample size to find a factor affecting the prognosis. The machine learning methods were used in this study, since these methods have analyzing power for a small sample size and are able to find a new factor that has been unknown to have an effect on the result. A decision tree model and a support vector machine were used for the analysis. RESULTS. The results identified mesio-distal position of the inserted implant as the most significant factor determining its prognosis. Both of the machine learning methods, the decision tree model and support vector machine, yielded the similar results. CONCLUSION. Dental clinicians should be careful in locating implants in the patient's mouths, especially mesio-distally, to minimize the negative complications against implant survival.