• Title/Summary/Keyword: biomass saccharification

Search Result 96, Processing Time 0.022 seconds

Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production (바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Gwak, Ki-Seob;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.397-405
    • /
    • 2009
  • In this study, we investigated the potential of producing bioethanol from Liriodendron tulipifera by using oxalic acid pretreatment. Amounts of fermentable sugars, mostly xylose and glucose, in the liquid fraction (hydrolysate) was $40.22g/{\ell}$ after the biomass was pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$. Production amounts of ethanol was $8.6g/{\ell}$ from the 72 hours of simultaneous saccharification and fermentation (SSF) on solid fraction of the pretreated sample. At the same condition, when the reaction time increased to 40 minutes, $32.66g/{\ell}$ of fermentable sugars in the hydrolysate and $9.5g/{\ell}$ of ethanol was produced from the process of pretreatment and SSF. As a result of analyzing the fermentation inhibitors, such as acetic acid, 5-HMF, furfural and total phenolic compounds, as the reaction time increased, the amount of the fermentation inhibitors in the hydrolysate increased. Production of the fermentation inhibitors was more affected by initial concentration of oxalic acid rather than reaction time. $3.39{\sim}5.78g/{\ell}$ of acetic acid was produced by pretreatment with 0.013 g/g of oxalic acid, and the amount of furfural produced by decomposition of xylose was 2~3 times higher than the amount of 5-HMF produced by decomposition of glucose. All the hydrolysates contained more than $5g/{\ell}$ of total phenols considered as the degradation product of lignin. Therefore, by analyzing the amount of fermentable sugars and fermentation inhibitors in the hydrolysate, and producing ethanol from SSF of solid fraction of the pretreated sample, the biomass pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$ can be expected to produce the most ethanol.

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent (황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가)

  • Hwang, Hyewon;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

Enzyme Activities and Cellulose Degradation of Domestic Softwoods in Shaking Culture of Fomitopsis palustris (국내산 침엽수 목분의 진탕배양에서 나타난 Fomitopsis palustris의 효소 활성 및 셀룰로오스 분해)

  • Choi, Doo-Yeol;Lee, Young-Min;Kim, Young-kyoon;Yoon, Jeong-Jun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.91-99
    • /
    • 2007
  • Activities of the extracellular enzyme from Fomitopsis palustris, a brown-rot fungi, and by which crystallinity changes of cellulose in the various softwoods, such as Larix leptolepsis, Finns rigida, Finns koraiensis and Finns densiflora by liquid culture, were investigated. Activity of Cellobiohydrolase (CBH) from F. palustris was detected in the every test softwoods culture, showing activities of the Endoglucanase (EG), $\beta$-glucosidase (BGL) and $\beta$-1,4-xylosidase (BXL). It was shown high enzyme activities in the sapwood culture than heartwood of the same wood species, However, the enzyme activities in most of test wood cultures increased with longer incubation time, indicating a possibility of intermix sapwood and heartwood for degradation process by enzyme. Also it was shown that protein patterns of the extracellular enzyme from F. palustris in wood particle substrate of the several domestic softwoods were similar with each other wood species, which suggested the possibility of mixing all softwoods in saccharification by enzyme from F. palustris. Crystallinity reduction value of cellulose by F. palustris was 4.2~20.4% in 4 weeks cultivation, 12.9~28.9% in 8 weeks.

Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia (황산과 암모니아를 이용한 목질계 바이오매스의 전처리 공정에 따른 당화 및 발효공정 전략)

  • Cayetano, Roent Dune;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This is to study the effects of various pretreatment methods of agricultural residue, corn stover, and to compare the feature and pros and cons of each method including dilute sulfuric acid (DSA), soaking in aqueous ammonia (SAA), and ammonia recycle percolation (ARP). In order to convert corn stover to ethanol, various pretreatments followed by simultaneous saccharification and co-fermentation (SSCF) were tested and evaluated in terms of ethanol yield. With 3%, w/w of glucan loading using ARP-, DSA-, and SAA-treated solids, SSCFs using recombinant E. coli strain (ATCC$^{(R)}$ 55124) with commercial enzymes (15 FPU of Spezyme CP/g-glucan and 30 CBU/g-glucan enzyme loading) were tested. In the SSCF tests, 87, 90, and 78% of theoretical maximum ethanol yield were observed using ARP-, DSA-, and SAA-treated solids, respectively, which were 69, 58, and 74% on the basis of total carbohydrates (glucan + xylan) in the untreated corn stover. Ethanol yield of SAA-treated solid was higher than those of ARP- and DSA-treated solids. In addition, SSCF test using treated solids plus pretreated hydrolysate indicated that the DSA-treated hydrolysate showed the strongest inhibition effect on the KO11 strain, whereas the ARP-treated hydrolysate was found to have the second strongest inhibition effect. Bioconversion scheme using SAA pretreatment and SSCF can make the downstream process simple, which is suggested to produce ethanol economically because utilization of hemicellulose in the hydrolysate is not necessary.

Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR) (순환식 암모니아 반응기(Ammonia Circulation Reactor (ACR))를 이용한 옥수수대의 전처리 및 효소 당화율 향상)

  • Shrestha, Rubee Koju;Hur, Onsook;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.335-341
    • /
    • 2013
  • Ammonia circulation reactor (ACR) was devised for the effective pretreatment of corn stover. This method is designed to circulate aqueous ammonia continuously so that it can reduce the chemical and water consumption during pretreatment. In this study, ammonia pretreatment with various reaction conditions such as reaction time (4~12 hour), temperature ($60{\sim}80^{\circ}C$), and solid:liquid ratio (1:3~1:8) was tested. Chemical compositions including solid remaining after reaction, lignin and carbohydrates were analyzed and enzymatic digestibility was also measured. It was observed that as reaction conditions become more severe, lignin removal was significantly affected, which was in the range of 47.6~70.6%. On the other hands, glucan and xylan losses were not substantial as compared to that of lignin. At all tested conditions, the glucan loss was not changed substantially, which was between 4.7% and 15.2%, while the xylan loss varied, which was between 7.4% and 25.8%. With (15 FPU-GC220+30 CBU)/g-glucan of enzyme loading, corn stover treated using ammonia circulation reactor for 8~12 hours resulted in 90.1~94.5% of 72-h glucan digestibility, which was higher than 92.7% of $Avicel^{(R)}$-101. In addition, initial hydrolysis rate (at 24 hour) of this treated corn stover was 73.0~79.4%, which was shown to be much faster than 69.5% of $Avicel^{(R)}$-101. As reaction time increased, more lignin removal and it was assumed that the enhanced enzymatic digestibility of treated biomass was attributed to the lignin removal.

Hydrolysis Methods for the Efficient Manufacture of Sugar Solutions from the Freshwater Alga Water-net (Hydrodictyon reticulatum) (담수조류 그물말로부터 당 용액의 효율적 제조를 위한 가수분해 방법)

  • Kim, Ji-Hyun;Kim, Sul Ki;Ko, Eun Hye;Kim, Jin-Cheol;Kim, Jin-Seog
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.176-183
    • /
    • 2013
  • To explore hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga Water-net (Hydrodictyon reticulatum, HR), acid hydrolysis, enzymatic hydrolysis, and combined hydrolysis (acid followed by enzymatic hydrolysis) were investigated. In the one-step acid hydrolysis, the reaction of 8% solids content using 2% sulfuric acid at $120^{\circ}C$ for 1 hour was desirable. In this case, glucose 27.44 g 100 g $DM^{-1}$ could be obtained from the HR-d13 samples. In the two-step acid hydrolysis, the primary hydrolysis (HR powder : 72% sulfuric acid = 1 g : 1.5 mL) was carried out for 1 hour at $60^{\circ}C$, and then the secondary hydrolysis was done for 1 hour at $120^{\circ}C$ after addition of distilled water 23.5 mL. In this case, glucose 35.11 g/100 g DM could be obtained from the HR-d13 samples. In the combined hydrolysis, 25% solids content using 2% hydrochloric acid were reacted for 1 hour at $120^{\circ}C$, and then citrate buffer and hydrolysis enzyme complexes (E1 1.0 mL+E2 0.2 mL $g^{-1}$ dried matter) were added and reacted for 1 - 2 days at $50^{\circ}C$. In this case, glucose 33.5 g 100 g $DM^{-1}$ could be obtained from the HR-d23+26 samples. In conclusion, combined hydrolysis was likely to be more useful saccharification method of HR biomass at a practical level, considering the glucose productivity, generation of fermentation-inhibiting substances (hydroxyl methyl furfural, furfural), and limited use of strong acid.